Skip to main content Accessibility help

Embreyite: structure determination, chemical formula and comparative crystal chemistry

  • Vadim M. Kovrugin (a1) (a2), Oleg I. Siidra (a1) (a3), Igor V. Pekov (a4), Nikita V. Chukanov (a5), Dmitry A. Khanin (a4) and Atali A. Agakhanov (a6)...


Embreyite from the Berezovskoe, Urals, Russia, was studied by the means of powder X-ray diffraction (XRD), single-crystal XRD, infrared spectroscopy and microprobe analysis. The empirical formula of embreyite obtained on the basis of microprobe analysis is Pb1.29Cu0.07Cr0.52P0.43O4 (without taking into account the presence of H2O). An examination of single-crystal XRD frames of the tested crystals cut from embreyite intergrowths revealed split reflection spots of weak intensities, even after a long exposure time. The crystal structure of embreyite (monoclinic, C2/m, a = 9.802(16), b = 5.603(9), c = 7.649(12) Å, β = 114.85(3)o and V = 381.2(11) Å3) has been solved by direct methods and refined to R1 = 0.050 for 318 unique observed reflections. The powder XRD patterns of the holotype embreyite and the fresh material studied are close in both d values and the intensities match the pattern calculated from the structural single-crystal XRD data. The unit-cell parameters were re-calculated for the holotype sample using a new cell setting and corresponding hkl indices. The crystal structure of embreyite is based on layers formed by corner-sharing mixed chromate-phosphate tetrahedra and PbO6 distorted octahedra. The interlayer space is filled by disordered Pb2+ and Cu2+ cations. Generally, the crystal structure of embreyite can be referred to the structural type of palmierite. {Pb[(Cr,P)O4]2]} layers in embreyite are similar in topology to those in yavapaiite-type compounds. The general formula of embreyite can be represented as (Pbx $M_y^{2 +} $ 1–x–y)2{Pb[(Cr,P)O4]2}(H2O)n, where M2+ = Cu and Zn and 0.5 ≤ x + y ≤ 1, or, in the simplified form: (Pb,Cu,□)2{Pb[(Cr,P)O4]2}(H2O)n. The simplified formula of embreyite is similar in stoichiometry to vauquelinite and may explain the existence of the solid-solution series. The determination of the crystal structure of embreyite may also help to resolve the crystal chemical nature of cassedanneite. The XRD pattern of cassedanneite contains a distinct reflection with d = 13.9 Å, forbidden for the embreyite unit cell. This feature may indicate the doubling of the c unit-cell parameter of cassedanneite in comparison with embreyite. We assume that cassedanneite has structural similarity to embreyite with, presumably, a disordered distribution of Cr and V.


Corresponding author


Hide All

Associate Editor: Juraj Majzlan



Hide All
Adib, D. and Ottemann, J. (1970) Some new lead oxide minerals and murdochite from T. Khuni Mine, Anarak, Iran. Mineralium Deposita, 5, 8693.
Aktas, O., Salje, E.K.H. and Carpenter, M.A. (2013) Resonant ultrasonic spectroscopy and resonant piezoelectric spectroscopy in ferroelastic lead phosphate, Pb3(PO4)2. Journal of Physics: Condensed Matter, 25, 465401.
Alkemper, J. and Fuess, H. (1998) The crystal structures of NaMgPO4, Na2CaMg(PO4)2 and Na18Ca13Mg5(PO4)18: new examples for glaserite related structures. Zeitschrift für Kristallographie – Crystalline Materials, 213, 282287.
Barbier, J. and Maxin, D. (1995) Phase transformation in Pb4(PO4)2CrO4. Journal of Solid State Chemistry, 116, 179184.
Bariand, P. and Herpin, P. (1963) Une nouvelle espèce minérale: l'iranite, chromate hydraté de plomb. Bulletin de la Societe Francaise Mineralogie et de Cristallographie, 86, 113135.
Bindi, L. and Menchetti, S. (2005) Structural changes accompanying the phase transformation between leadhillite and susannite: A structural study by means of in situ high-temperature single-crystal X-ray diffraction. American Mineralogist, 90, 16411647.
Bismayer, U. and Salje, E. (1981) Ferroelastic phases in Pb3(PO4)2–Pb3(AsO4)2; X-ray and optical experiments. Acta Crystallographica, A37, 145153.
Cesbron, F. and Williams, S.A. (1980) Iranite-hémihédrite, bellite, phoenicochroite, vauquelinite et fornacite: synthèse et nouvelles données. Bulletin de Minéralogie, 103, 469477.
Cesbron, F., Giraud, R., Pillard, F. and Poullen, J.-F. (1988) La cassedannéite, nouveau chromo-vanadate de plomb de Beresovsk (Oural). Comptes Rendus de l'Académie des Sciences – Series II, 306, 125127.
Christy, A. (2015) Causes of anomalous mineralogical diversity in the Periodic Table. Mineralogical Magazine, 79, 3349.
Chukanov, N.V. and Chervonnyi, A.D. (2016) Infrared Spectroscopy of Minerals and Related Compounds. Springer Verlag, Cham, Switzerland.
Cocco, G., Fanfani, L. and Zanazzi, P.F. (1967) The crystal structure of fornacite. Zeitschrift für Kristallographie, 124, 385397.
Cooper, M.A. and Hawthorne, F.C. (1994) The crystal structure of wherryite, Pb7Cu2(SO4)4(SiO4)2(OH)2, a mixed sulfate-silicate with [[6] M(TO 4)2ϕ] chains. The Canadian Mineralogist, 32, 373380.
Cooper, M.A., Ball, N.A., Hawthorne, F.C., Paar, W.H., Roberts, A.C. and Moffatt, E. (2011) Georgerobinsonite, Pb4(CrO4)2(OH)2FCl, a new chromate mineral from the Mammoth – St. Anthony mine, Tiger, Pinal County, Arizona: description and crystal structure. The Canadian Mineralogist, 49, 865876.
Cooper, M.A., Abdu, Y.A., Hawthorne, F.C. and Kampf, A.R. (2016) The crystal structure of gianellaite, [(NHg2)2](SO4)(H2O)x, a framework of (NHg4) tetrahedra with ordered (SO4) groups in the interstices. Mineralogical Magazine, 80, 869875.
Effenberger, H. and Pertlik, F. (1986) Four monazite type structures: comparison of SrCrO4, SrSeO4, PbCrO4 (crocoite), and PbSeO4. Zeitschrift für Kristallographie, 176, 7583.
Fanfani, L. and Zanazzi, P.F. (1968) The crystal structure of vauquelinite and the relationships to fornacite. Zeitschrift für Kristallographie – Crystalline Materials, 126, 433443.
Fettes, D. and Desmons, J. (2007) Metamorphic rocks – A Classification and Glossary of Terms. Cambridge University Press, UK.
Gao, J., Song, L., Hu, X. and Zhang, D. (2011) A buetschliite-type rare-earth borate, KBaY(BO3)2. Solid State Sciences, 13, 115119.
Hartl, K. and Braungart, R. (1978 a) Strontiumchromat(V, VI), Sr2.670.33(CrO4)1.33(CrO4)0.67, eine Hochtemperaturphase mit Defekt-Bariumphosphat-Struktur. Zeitschrift für Naturforschung, B33, 952953 [in German].
Hartl, K. and Braungart, R. (1978 b) Strontiumphosphat-chromat(VI), Sr3(PO4)2·SrCrO4, eine dimorphe Hochtemperaturverbindung. Zeitschrift für Naturforschung, B33, 954955 [in German].
Hesse, K.-F. and Simons, B. (1982) Crystal structure of synthetic K2Mg(CO3)2. Zeitschrift für Kristallographie, 161, 289292.
Kampf, A.R., Mills, S.J., Housley, R.M., Rumsey, M.S. and Spratt, J. (2012 a) Lead-tellurium oxysalts from Otto Mountain near Baker, California: VII. Chromschieffelinite, Pb10Te6O20(OH)14(CrO4)(H2O)5, the chromate analog of schieffelinite. American Mineralogist, 97, 212219.
Kampf, A.R., Mills, S.J., Housley, R.M., Bottrill, R.S. and Kolitsch, U. (2012 b) Reynoldsite, Pb2${\rm Mn}_{\rm 2}^{{\rm 4 +}} $O5(CrO4), a new phyllomanganate-chromate from the Blue Bell claims, California and the Red Lead mine, Tasmania. American Mineralogist, 97, 11871192.
Khanin, D.A. and Pekov, I.V. (2016 a) Minerals with brackebuschite-like structures: a novel solid-solution system involving Cr6+ and V5+. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 145, 96112 [in Russian].
Khanin, D.A. and Pekov, I.V. (2016 b) New data on cassedanneite. International Conference Dedicated to 300-year Anniversary of the Fersman Mineralogical Museum. Moscow, pp. 188189 [in Russian].
Khanin, D.A., Pekov, I.V., Pakunova, A.V., Ekimenkova, I.A. and Yapaskurt, V.O. (2015) Natural system of fornacite–vauquelinite–embreyite solid solutions and variations in the chemical composition of these minerals from occurrences of the Urals. Zapiski Rossiiskogo Mineralogicheskogo Obshchestva, 144, 3660 [in Russian].
Kleymenov, D.A., Pekov, I.V., Erokhin, Y.V. and Chukanov, N.V. (2003) New data on embreyite from the oxidation zone of the Berezovskoye gold deposit. Pp. 171177 in: Mineralogiya Urala-2003. Miass, Russia [in Russian].
Kovrugin, V.M., Colmont, M., Terryn, C., Colis, S., Siidra, O.I., Krivovichev, S.V. and Mentré, O. (2015) pH-Controlled pathway and systematic hydrothermal phase diagram for elaboration of synthetic lead nickel selenites. Inorganic Chemistry, 54, 24252434.
Ksenofontov, D.A., Kabalov, Y.K., Pekov, I.V., Zubkova, N.V., Ekimenkova, I.A. and Pushcharovskii, D.Y. (2014) Refinement of the crystal structure of fornacite using the Rietveld method. Doklady Earth Sciences, 456, 520523.
Lazoryak, B.I. (1996) Design of inorganic compounds with tetrahedral anions. Russian Chemical Reviews, 65, 287305.
Leclaire, A., Monier, J.C. and Raveau, B. (1984) A molybdosilicophosphate with an intersecting-tunnel structure which exhibits ion-exchange properties, AMo3P5.8Si2O25 (A = Rb, Tl). Acta Crystallographica, B40, 180185.
Martinetto, P., Anne, M., Dooryhée, E., Walter, P. and Tsoucaris, G. (2002) Synthetic hydrocerussite, 2PbCO3·Pb(OH)2, by X-ray powder diffraction, Acta Crystallographica, C58, i82i84.
McLean, W.J. and Anthony, J.W. (1970) The crystal structure of hemihedrite. American Mineralogist, 55, 11031114.
Moore, P.B. (1973) Bracelets and pinwheels: A topological-geometrical approach to the calcium orthosilicate and alkali sulfate structures. American Mineralogist, 58, 3242.
Mücke, A. (1972) Santanait, ein neues Bleichromat-Mineral. Neues Jahrbuch für Mineralogie, Monatshefte, 10, 455458.
Murashko, M.N., Pekov, I.V., Krivovichev, S.V., Chernyatyeva, A.P., Yapaskurt, V.O., Zadov, A.E. and Zelensky, M.E. (2013) Steklite, KAl(SO4)2: A finding at the Tolbachik Volcano, Kamchatka, Russia, validating its status as a mineral species and crystal structure. Geology of Ore Deposits, 55 [Special Issue: Rossiiskogo Mineralogicheskogo Obshchestva], 594600.
Nakamoto, K. (2009) Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, Applications in Coordination, Organometallic, and Bioinorganic Chemistry. John Wiley & Sons, Hoboken, USA.
Nichols, M.C. (1966) The structure of tsumebite. American Mineralogist, 51, 267267.
Pekov, I.V. (1998) Minerals First Discovered on the Territory of the Former Soviet Union. OP, Moscow.
Quareni, S. and de Pieri, R. (1965) A three-dimensional refinement of the structure of crocoite, PbCrO4. Acta Crystallographica, 19, 287289.
Rumsey, M.S., Krivovichev, S.V., Siidra, O.I., Kirk, C.A., Stanley, C.J. and Spratt, J. (2012) Rickturnerite, Pb7O4[Mg(OH)4](OH)Cl3, a complex new lead oxychloride mineral. Mineralogical Magazine, 76, 5973.
Salje, E.K.H. (2015) Modulated minerals as potential ferroic materials. Journal of Physics: Condensed Matter, 27, 305901.
Sarukhanyan, N.L., Iskhakova, L.D. and Trunov, V.K. (1983) Crystal structure of RbEu(SO4)2. Kristallografiya, 28, 452456 [in Russian].
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, C71, 38.
Siidra, O.I., Vergasova, L.P., Krivovichev, S.V., Kretser, Y.L., Zaitsev, A.N. and Filatov, S.K. (2014 a) Unique thallium mineralization in the fumaroles of Tolbachik volcano, Kamchatka Peninsula, Russia. I. Markhininite, TlBi(SO4)2. Mineralogical Magazine, 78, 16871698.
Siidra, O.I., Zenko, D.S., Krivovichev, S.V. (2014 b) Structural complexity of lead silicates: Crystal structure of Pb21[Si7O22]2[Si4O13] and its comparison to hyttsjoite. American Mineralogist, 99, 817823.
Sokolova, E., Hawthorne, F.C., Pautov, L.A. and Agakhanov, A.A. (2010) Byzantievite, Ba5(Ca,REE,Y)22(Ti,Nb)18(SiO4)4[(PO4),(SiO4)]4(BO3)9O21[(OH),F]43(H2O)1.5: the crystal chemistry of the only known mineral with the oxyanions (BO3), (SiO4) and (PO4). Mineralogical Magazine, 74, 285308.
Song, S.Y. and Ok, K.M. (2015) Modulation of framework and centricity: cation size effect in new quaternary selenites, ASc(SeO3)2 (A = Na, K, Rb, and Cs). Inorganic Chemistry, 54, 50325038.
Steele, A.M., Pluth, J.J. and Livingstone, A. (1998) Crystal structure of macphersonite Pb4SO4(CO3)2(OH)2: comparison with leadhillite. Mineralogical Magazine, 62, 451459.
Tissot, R.G., Rodriguez, M.A., Sipola, D.L. and Voigt, J.A. (2001) X-ray powder diffraction study of synthetic palmierite, K2Pb(SO4)2. Powder Diffraction, 16, 9297.
Wildner, M. (1992 a) Isotypism of a selenite with a carbonate: structure of the buetschliite-type compound K2Co(SeO3)2. Acta Crystallographica, C48, 410412.
Wildner, M. (1992 b) Structure of K2Mn(SeO3)2, a further buetschliite-type selenite. Acta Crystallographica, C48, 595.
Williams, S.A. (1972) Embreyite, a New Mineral from Berezov, Siberia. Mineralogical Magazine, 38, 790793.
Williams, S.A. and Anthony, J.W. (1970) Hemihedrite, a new mineral from Arizona. American Mineralogist, 55, 10881102.
Williams, S.A. and Duggan, M. (1980) La macquartite: un nouveau silico-chromate de Tiger, Arizona. Bulletin de Minéralogie, 103, 530532.
Williams, S.A., McLean, W.J. and Anthony, J.W. (1970) A study of phoenicochroite – its structure and properties. American Mineralogist, 55, 784792.
Yang, H., Sano, J.L., Eichler, C., Downs, R.T. and Costin, G. (2007) Iranite, CuPb10(CrO4)6(SiO4)2(OH)2, isomorphous with hemihedrite. Acta Crystallographica, C63, i122i124.
Zubkova, N.V., Pushcharovsky, D.Y., Giester, G., Tillmanns, E., Pekov, I.V. and Kleimenov, D.A. (2002) The crystal structure of arsentsumebite, Pb2Cu[(As,S)O4]2(OH). Mineralogy and Petrology, 75, 7988.


Embreyite: structure determination, chemical formula and comparative crystal chemistry

  • Vadim M. Kovrugin (a1) (a2), Oleg I. Siidra (a1) (a3), Igor V. Pekov (a4), Nikita V. Chukanov (a5), Dmitry A. Khanin (a4) and Atali A. Agakhanov (a6)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed