Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-25T06:29:36.057Z Has data issue: false hasContentIssue false

Cu0.8Mg1.2Si2O6 : a copper-bearing silicate with the low-clinopyroxene structure

Published online by Cambridge University Press:  02 January 2018

Lei Ding
Affiliation:
Université Grenoble Alpes, Institut Néel, Grenoble, 38042, France CNRS, Institut Néel, Grenoble, 38042, France
Céline Darie
Affiliation:
Université Grenoble Alpes, Institut Néel, Grenoble, 38042, France CNRS, Institut Néel, Grenoble, 38042, France
Claire V. Colin
Affiliation:
Université Grenoble Alpes, Institut Néel, Grenoble, 38042, France CNRS, Institut Néel, Grenoble, 38042, France

Abstract

The Cu0.8Mg1.2Si2O6 pyroxene has been synthesized using a soft chemistry method. Its crystal structure was determined from powder X-ray diffraction data. Cu0.8Mg1.2Si2O6 crystallizes with the lowclinopyroxene monoclinic structure (space group P21/c). The role of the Jahn-Teller-distorted Cu2+ cation on the stability of this strongly distorted structure is investigated. Cu2+ shows a strong preference for the M2 site, attributed to a better adaptation of its JT-distorted coordination polyhedron to this already distorted and more flexible site. Comparison with previously reported compounds indicates that increasing the Cu content enhances the M2 site distortion, eventually leading to symmetry lowering from orthorhombic Pbca to monoclinic P21/c. These observations bring new insight into the mechanisms of formation and chemical composition of pyroxene minerals in the presence of JT cations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, R.J., Gasparik, T. and Finger, L.W. (1989) Crystal structure of a Cr2+-bearing pyroxene. American Mineralogist, 74,599603 Google Scholar
Bérar, J-F. and Baldinozzi, G. (1993) Modeling of line-shape asymmetry in powder diffraction. Journal of Applied Crystallography, 26, 128129. CrossRefGoogle Scholar
Breuer, K.H., Eysel, W. and Behruzi, M. (1986) Copper (II) silicates and germinates with chain structures. Zeitschrift für Kristallographie, 176,219232 Google Scholar
Cameron, M. and Papike, 11 (1981) Structural and chemical variations in pyroxenes. American Mineralogist, 66,150 Google Scholar
Favre-Nicolin, V and Cerny, R. (2002) FOX, ‘free objects for crystallography': a modular approach t. ab initio structure determination from powder diffraction.Journal of Applied Crystallography, 35, 734743. Google Scholar
Finger, L.W., Hazen, R.M. and Hemley, R.J. (1989) BaCuSi2O6: a new cyclosilicate with four-membered tetrahedral rings. American Mineralogist, 74,952955 Google Scholar
Isobe, M., Ninomiya, E., Vasilev, A.N. and Ueda, Y. (2002) Novel phase transition in spin-1/2 linear chain systems: NaTiSi2O6 and LiTiSi2O6 . Journal of the Physical Society of Japan, 71,14231426 CrossRefGoogle Scholar
Jodlauk, S., Becker, P., Mydosh, J.A., Khomskii, D.I., Lorenz, T., Streltsov, S.V., Hezel, D.C. and Bohaty, L. (2007) Pyroxenes: a new class of multiferroics. Journal of Physics: Condensed Matter, 19, 432201–32209.Google Scholar
Kim, I., Jeon, G.G., Patil, D., Patil, S., Nenert, G. and Kin, K.H. (2012) Observation of multiferroic properties in pyroxene NaFeGe2O6 . Journal of Physics: Condensed Matter, 24, 306001306007. Google ScholarPubMed
Makovicky, E. and Balic-Zunic, T. (1998) New measure of distortion for coordination polyhedra. Acta Crystallographica, B54, 766773. CrossRefGoogle Scholar
Nenert, G., Isobe, M., Kim, I., Ritter, C., Colin, C.V., Vasiliev, A.N., Kim, K.H. and Ueda, Y (2010a) Interplay between low dimensionality and magnetic frustration in the magnetoelectric pyroxenes LiCrX2O6 (X = Ge, Si). Physical Review B, 82,024429.CrossRefGoogle Scholar
Nenert, G., Kim, I., Isobe, M., Ritter, C., Vasiliev, A.N., Kim, K.H. and Ueda, Y. (2010b) Magnetic and magnetoelectric study of the pyroxene NaCrSi2O6 . Physical Review B, 81, 184408.CrossRefGoogle Scholar
Ohashi, Y and Finger, L.W. (1976) The effect of Ca substitution on the structure of clinoenstatite. Carnegie Institution of Washington Yearbook, 75, 743746. Google Scholar
Redhammer, G.J. and Roth, G. (2004) Structural changes upon the temperature dependent C2/c-P21/c phase transition in LiMe 3+Si2O6 clinopyroxenes, Me = Cr, Ga, Fe, V, Sc and In. Zeitschrift für Kristallographie, 219,585605 Google Scholar
Redhammer, G.J., Tippelt, G., Merz, M., Roth, G., Treutmann, W. and Amthauer, G. (2005) Structure of the clinopyroxene-type compound CaCuGe2O6between 15 and 800 K. Acta Crystallographica, B61, 367380. CrossRefGoogle Scholar
Redhammer, G.J., Roth, G., Treutmann, W., Hoelzel, M., Paulus, W., Andre, G., Pietzonka, C. and Amthauer, G. (2009) The magnetic structure of clinopyroxene-type LiFeGe2O6 and revised data on multiferroic LiFeSi2O6 . Journal of the Solid State Chemistry, 182,23742384 CrossRefGoogle Scholar
Redhammer, G.J., Senyshyn, A., Meven, M., Roth, G., Prinz, S., Pachler, A., Tippelt, G., Pietzonka, C., Treutmann, W., Hoelzel, M., Pedersen, B. and Amthauer, G (2011) Nuclear and incommensurate magnetic structure of NaFeGe2O6 between 5 K and 298 K and new data on multiferroic NaFeSi2O6. Physics and Chemistry of Minerals, 38,139157 CrossRefGoogle Scholar
Redhammer, G.J., Roth, G., Senyshyn, A., Tippelt, G and Pietzonka, C. (2013) Crystal and magnetic spin structure of germanium-hedenbergite, CaFeGe2O6, and a comparison with other magnetic/magneto-electric/multiferroic pyroxenes. Zeitschrift für Kristallographie, 228,140150 CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1993) Recent advances in mag¬netic structure determination by neutron powder diffraction. Physica B, 192,5569 CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (2010) BondStr. Available from www.ill.eu/sites/fullprof/ Google Scholar
Sasago, Y., Hase, M. and Uchinokura, K. (1995) Discovery of a spin-singlet ground state with an energy gap in CaCuGe2O6 . Physical Review B, 52, 35333539. CrossRefGoogle ScholarPubMed
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767. CrossRefGoogle Scholar
Sparta, K.M. and Roth, G (2004) Reinvestigation of the structure of BaCuSi2O6 - evidence for a phase transition at high temperature. Acta Crystallographica, B60, 491–95.CrossRefGoogle Scholar
Tachi, T., Horiuchi, H. andNagasawa, H. (1997) Structure of Cu-bearing orthopyroxene, Mg(Cu 56,Mg 44)Si2O6, and behavior of Cu2+ in the orthopyroxene structure. Physics and Chemistry of Minerals, 24, 463476. CrossRefGoogle Scholar
Thompson, R.M. and Downs, R.T. (2003) Model pyroxenes I: ideal pyroxene topologies. American Mineralogist, 88,653666 CrossRefGoogle Scholar
Thompson, R.M. and Downs, R.T. (2004) Model pyroxenes II: structural variation as a function of tetrahedral rotation. American Mineralogist, 89,614628 CrossRefGoogle Scholar
Thompson, P., Cox, D.E. and Hastings, J.B. (1987) Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3 . Journal of Applied Crystallography, 20, 7983. CrossRefGoogle Scholar
Thompson, R.M., Downs, R.T. and Redhammer, G.J. (2005) Model pyroxenes III: volume o. C2/c pyrox¬enes at mantle P T, and x. American Mineralogist, 90, 18401851. Google Scholar
Valenti, R., Saha, D.T. and Gros, C. (2002) Nature of the spin-singlet ground state in CaCuGe2O6. Physical Review B, 66,054426.CrossRefGoogle Scholar