Skip to main content Accessibility help
×
Home

The crystal structure of camerolaite and structural variation in the cyanotrichite family of merotypes

  • S. J. Mills (a1), A. G. Christy (a2), C. Schnyder (a3), G. Favreau (a4) and J. R. Price (a5)...

Abstract

We present Raman data for camerolaite, cyanotrichite and carbonatecyanotrichite, and using synchrotron single-crystal X-ray diffraction have solved the structure of camerolaite from the Tistoulet Mine, Padern, Aude Department, France. Camerolaite crystallizes in space group P1 with the unit-cell parameters: a = 6.3310(13) Å, b = 2.9130(6) Å, c = 10.727(2) Å, α = 93.77(3)°, β = 96.34(3)°, γ =79.03(3)º, V = 192.82(7) Å3 and Z = ⅓, with respect to the ideal formula from the refinement, Cu6Al3(OH)18(H2O)2[Sb(OH)6](SO4). The crystal structure was solved to R 1 = 0.0890 for all 1875 observed reflections [F o > 4σFo] and 0.0946 for all 2019 unique reflections. The P cell has been transformed into a C-centred cell that aids comparison with that of the structurally related khaidarkanite by a C = 2a Pb P, giving parameters a = 12.441(3), b = 2.9130(6), c = 10.727(2) Å, α = 93.77(3), β = 95.57(3), γ = 92.32(3)º and Z = ⅔ in C1. Edge-sharing octahedral ribbons Cu2Al(O,OH,H2O)8 form hydrogen-bonded layers || (001), as in khaidarkanite. The partially occupied interlayer Sb and S sites of the average structure are in octahedral and tetrahedral coordination by oxygen, respectively. They cannot be occupied simultaneously, which leads to regular alternation of [Sb(OH)6] and SO4 2– groups in rods || y, resulting in local tripling of the periodicity along y for the Sb(OH)6–SO4 rods. Thus, camerolaite has a ‘host–guest’ structure in which an invariant host module (layers of Cu–Al ribbons) has embedded rod-like guest modules with a longer periodicity. Coupling between the phases of these rods is only short-range, resulting in diffuse X-ray scattering rather than sharp superstructure reflections. Similar disorder is known for parnauite, and is deduced for other members of the cyanotrichite group (cyanotrichite, carbonatecyanotrichite and khaidarkanite). Group members all share the Cu–Al ribbon module but have interlayer rods of different compositions and topologies; thus, they form a merotypic family. The low symmetry of the camerolaite average structure suggests other possibilities for structure variation in the group, which are discussed.

Copyright

Corresponding author

References

Hide All
Allmann, R. (1975) Beziehungen zwischen Bindungslä ngen und Bindungsstä rken in Oxidstrukturen. Monatshefte für Chemie, 106, 779–793.
Angel, R.J. (1985) Structural variation in wollastonite and bustamite. Mineralogical Magazine, 49, 37–48.
Ankinovich, E.A., Gekht, I.I. and Zaitseva, R.I. (1963) A new variety of cyanotrichite–carbonate-cyanotrichite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 92, 458–463.
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2003) Handbook of Mineralogy. Volume V, Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, Arizona USA, 813 pp.
Berbain, C., Favreau, G. and Aymar, J. (2005) Mines et Minéraux des Pyrénées-Orientales et des Corbie`res. Association Franc¸aise de Microminéralogie, 248 pp.
Bonaccorsi, E., Merlino, S. and Orlandi, P. (2007) Zincalstibite, a new mineral, and cualstibite: crystal chemical and structural relationships. American Mineralogist, 92, 198–203.
Bonazzi, P. and Mazzi, F. (1996) Bottinoite, Ni(H2O)6[Sb(OH)6]2: crystal structure, twinning, and and hydrogen-bond model. American Mineralogist, 81, 1494–1500.
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.
Brown, I.D. (1978) Bond valences – a simple structural model for inorganic chemistry. Chemical Society Reviews, 7, 359–378.
Bruker, (2001) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Christy, A.G. and Putnis, A. (1988) Planar and line defects in the sapphirine polytypes. Physics and Chemistry of Minerals, 15, 548–558.
Christy, A.G. and Zvyagin, B.B. (1994) Polytypsim in minerals. Pp. 106–124. in: Advanced Mineralogy VI: Composition, Structure and Properties of Mineral Matter: Concepts, Results and Problems (A.S. Marfunin, editor). Springer-Verlag, New York.
Christy, A.G., Alberius-Hening, P. and Lidin, S.A. (2001) Simulation of diffuse scattering in nonstoichiometric apatites Cd5-Z/2(VO4)3I1-Z and Cd5-Z/ 2(PO4)3Br1-Z: chimney-ladder structures with ladderladder and chimney-ladder coupling. Journal of Solid State Chemistry, 156, 88–100.
Chukanov, N.V., Karpenko, V.Yu., Rastsvetaeva, R.K., Zadov, A.E. and Kuz’mina, O.V. (1999) Khaidarkanite, Cu4Al3(OH)14F3·2H2O, a new mineral from the Khaidarkan deposit, Kyrgyzstan. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 128, 58–63.
Cuchet, S. (1995) Seconde occurrence de camérolaïte, Cu4Al2[(HSbO4,SO4)](OH)10(CO3)·2H2O, Val d’Anniviers, Valais, Suisse. Schweizerische mineralogische und petrographische Mitteilungen, 75, 283–284.
Deliens, M., Berbain, C. and Favreau, G. (1993) Les anciennes mines de Padern-Montgaillard (Aude) (Géologie, Histoire, Minéralogie). Association Franc¸aise de Microminé ralogie, Languedoc- Roussillon, France, 84 pp.
Dornberger-Schiff, K. (1964) Grundzüge einer Theorie der OD Strukturen aus Schichten. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Kl. für Chemie, Geologie und Biologie, 3. Berlin, 106 pp.
Dornberger-Schiff, K. and Merlino, S. (1974) Order- Disorder in sapphirine, aenigmatite and aenigmatitelike minerals. Acta Crystallographica, A30, 168–173.
Ďurovič, S. (1997) Fundamentals of OD theory. Pp. 3–28. in: Modular Aspects of Minerals (S. Merlino, editor). EMU Notes in Mineralogy Vol. 1. Eötvös University Press, Budapest.
Favreau, G., Berbain, C. and Meisser, N. (2003) Cyanophyllite et autres minéraux rares de Padern (Aude). Le Cahier des Micromonteurs, 82, 17–23.
Ferraris, G., Makovicky, E. and Merlino, S. (2004) Crystallography of Modular Materials. IUCr Monographs on Crystallography, 15. Oxford University Press, UK, 370pp.
Hager, S.L., Leverett, P. and Williams, P.A. (2009) Possible structural and chemical relationships in the cyanotrichite group. The Canadian Mineralogist, 47, 635–648.
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemical of sulfate minerals. Pp. 1–112.in: Sulfate minerals crystallography, geochemistry and environmental significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy, 40. Mineralogical Society of America, Washington, DC.
Henmi, C., Kawahara, A., Henmi, K., Kusachi, I. and Takeuchi, Y. (1983) The 3T, 4T and 5T polytypes of wollastonite from Kushiro, Hiroshima Prefecture, Japan. American Mineralogist, 68, 156–163.
Horiuchi, H., Morimoto, N. and Yamaoka, S. (1979) The crystal structure of Li2WO4-II: a structure related to spinel. Journal of Solid State Chemistry, 30, 129–135.
Hyde, B.G. and Andersson, S. (1989) Inorganic Crystal Structures. Wiley-Interscience, New York, 430 pp. Kabsch, W. (2010) XDS. Acta Crystallographica, D66, 125–132.
Kolitsch, U., Giester, G. and Pippinger, T. (2013) The crystal structure of cualstibite–1. (formerly cyanophyllite): its revised chemical formula and its relation to cualstibite–1.. Mineralogy and Petrology, 107, 171–178.
Makovicky, E. (1997) Modularity – different types and approaches. Pp. 315–343. in: EMU Notes in Mineralogy Vol. 1, Modular Aspects of Minerals (S. Merlino, editor). Eötvös University Press, Budapest.
Merlino, S. and Zvyagin, B.B. (1998) Modular features of sapphirine-type structures. Zeitschrift für Kristallographie, 213, 513–521.
Merlino, S., Bonaccorsi, E., Grabezhev, A.I., Zadov, A.E., Pertsev, N.N. and Chukanov, N.V. (2009) Fukalite: An example of OD structure with twodimensional disorder. American Mineralogist, 94, 323–333.
Mills, S.J., Christy, A.G., Chen, E.C.-C. and Raudsepp, M. (2009) Revised values of the bond valence parameters for [6]Sb(V)–O and [3–11. Sb(III)–O. Zeitschrift für Kristallographie, 224, 423–431.
Mills, S.J., Christy, A.G., Génin, J.-M.R., Kameda, T. and Colombo, F. (2012a) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 1289–1336.
Mills, S.J., Christy, A.G., Kampf, A.R., Housley, R.M., Favreau, G., Boulliard, J.-C. and Bourgoin, V. (2012b) Zincalstibite-9R: the first 9-layer polytype with the layered double hydroxide structure-type. Mineralogical Magazine, 76, 1337–1345.
Mills, S.J., Kampf, A.R., Housley, R.M., Favreau, G., Pasero, M., Biagioni, C., Merlino, S., Berbain, C. and Orlandi , P.(2012c) Omsite, (Ni,Cu)2Fe3+(OH)6[Sb(OH)6], a new member of the cualstibite group from Oms, France. Mineralogical Magazine, 76, 1347–1354.
Mills, S.J., Kampf, A.R., McDonald, A.M., Bindi, L., Christy, A.G., Kolitsch, U. and Favreau, G. (2013) The crystal structure of parnauite: a copper arsenatesulphate with translational disorder of structural rods. European Journal of Mineralogy, 25, 693–704.
Nelmes, R.J., Allan, D.R., McMahon, M.I. and Belmonte, S.A. (1999) Self-hosting incommensurate structure of Ba-IV. Physical Review Letters, 83, 4081–4084.
Pekov, I.V. (1998) Minerals First Discovered on the Territory of the Former Soviet Union. Ocean Pictures, Moscow, 370 pp.
Rastsvetaeva, R.K., Chukanov, N.V. and Karpenko, V.U. (1997) The crystal structure of a new compound Cu4Al3(OH)14F3(H2O)2 . Doklady Akademii Nauk, 353, 354–357. [in Russian, English abstract: American Mineralogist, 83, 188].
Sarp, H. and Perroud, P. (1991) Camerolaite, Cu4Al2[HSbO4,SO4](OH)10(CO3)·2H2O, a new mineral from Cap Garonne mine, Var, France. Neues Jahrbuch für Mineralogie, Monatshefte, 1991, 481–486.
Schnorrer, G. and Bacher, F. (2000) Die Mineralien von der Sonnblick-Nordwand, Rauris, Salzburg O. sterreich – insbesondere der erste Khaidarkanit- Fund in Österreich. Mineralien-Welt, 11, 52–57.
Sejkora, J., Ondruš, P., Fikar, M., Veselovský, F., Mach, Z., Gabašová, A., Škoda, R. and Beran, P. (2006) Supergene minerals from the Huber stock and Schnöd stock deposits, Krásno ore district, the Slavkovský les area, Czech Republic. Journal of the Czech Geological Society, 51, 57–101.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
Tse, J.S. (2005) Crystallography of selected high pressure elemental solids. Zeitschrift für Kristallographie, 220, 521–530.
Urusov, V.S. (2003) Theoretical analysis and empirical manifestation of the distortion theorem. Zeitschrift für Kristallographie, 218, 709–719.
Walenta, K. (1995) Camerolait aus dem Schwarzwald. Aufschluss, 46, 210–214.
Walenta, K. (2001) Ein cyanotrichitähnliches Mineral von den Grube Clara. Erzgräber, 15, 29–35.
Williams, S.A. (1985) Mopungite, a new mineral from Nevada. Mineralogical Record, 16, 73–74.

Keywords

The crystal structure of camerolaite and structural variation in the cyanotrichite family of merotypes

  • S. J. Mills (a1), A. G. Christy (a2), C. Schnyder (a3), G. Favreau (a4) and J. R. Price (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed