Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-25T00:29:11.879Z Has data issue: false hasContentIssue false

The crystal structure of camerolaite and structural variation in the cyanotrichite family of merotypes

Published online by Cambridge University Press:  05 July 2018

S. J. Mills*
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
A. G. Christy
Affiliation:
Centre for Advanced Microscopy, Australian National University, Canberra, ACT 0200, Australia
C. Schnyder
Affiliation:
Département de minéralogie et de pétrographie, Muséum d’histoire naturelle, 1 rte de Malagnou, Case postale 6434, CH - 1211 Gene`ve 6, Switzerland
G. Favreau
Affiliation:
421 Avenue Jean Monnet, 13090 Aix-en-Provence, France
J. R. Price
Affiliation:
Australian Synchrotron, 800 Blackburn Road, Clayton, Victoria 3168, Australia

Abstract

We present Raman data for camerolaite, cyanotrichite and carbonatecyanotrichite, and using synchrotron single-crystal X-ray diffraction have solved the structure of camerolaite from the Tistoulet Mine, Padern, Aude Department, France. Camerolaite crystallizes in space group P1 with the unit-cell parameters: a = 6.3310(13) Å, b = 2.9130(6) Å, c = 10.727(2) Å, α = 93.77(3)°, β = 96.34(3)°, γ =79.03(3)º, V = 192.82(7) Å3 and Z = ⅓, with respect to the ideal formula from the refinement, Cu6Al3(OH)18(H2O)2[Sb(OH)6](SO4). The crystal structure was solved to R1 = 0.0890 for all 1875 observed reflections [Fo > 4σFo] and 0.0946 for all 2019 unique reflections. The P cell has been transformed into a C-centred cell that aids comparison with that of the structurally related khaidarkanite by aC = 2aPbP, giving parameters a = 12.441(3), b = 2.9130(6), c = 10.727(2) Å, α = 93.77(3), β = 95.57(3), γ = 92.32(3)º and Z = ⅔ in C1. Edge-sharing octahedral ribbons Cu2Al(O,OH,H2O)8 form hydrogen-bonded layers || (001), as in khaidarkanite. The partially occupied interlayer Sb and S sites of the average structure are in octahedral and tetrahedral coordination by oxygen, respectively. They cannot be occupied simultaneously, which leads to regular alternation of [Sb(OH)6] and SO42– groups in rods || y, resulting in local tripling of the periodicity along y for the Sb(OH)6–SO4 rods. Thus, camerolaite has a ‘host–guest’ structure in which an invariant host module (layers of Cu–Al ribbons) has embedded rod-like guest modules with a longer periodicity. Coupling between the phases of these rods is only short-range, resulting in diffuse X-ray scattering rather than sharp superstructure reflections. Similar disorder is known for parnauite, and is deduced for other members of the cyanotrichite group (cyanotrichite, carbonatecyanotrichite and khaidarkanite). Group members all share the Cu–Al ribbon module but have interlayer rods of different compositions and topologies; thus, they form a merotypic family. The low symmetry of the camerolaite average structure suggests other possibilities for structure variation in the group, which are discussed.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allmann, R. (1975) Beziehungen zwischen Bindungslä ngen und Bindungsstä rken in Oxidstrukturen. Monatshefte für Chemie, 106, 779793.CrossRefGoogle Scholar
Angel, R.J. (1985) Structural variation in wollastonite and bustamite. Mineralogical Magazine, 49, 3748.CrossRefGoogle Scholar
Ankinovich, E.A., Gekht, I.I. and Zaitseva, R.I. (1963) A new variety of cyanotrichite–carbonate-cyanotrichite. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 92, 458463.Google Scholar
Anthony, J.W., Bideaux, R.A., Bladh, K.W. and Nichols, M.C. (2003) Handbook of Mineralogy. Volume V, Borates, Carbonates, Sulfates. Mineral Data Publishing, Tucson, Arizona USA, 813 pp.Google Scholar
Berbain, C., Favreau, G. and Aymar, J. (2005) Mines et Minéraux des Pyrénées-Orientales et des Corbie`res. Association Franc¸aise de Microminéralogie, 248 pp.Google Scholar
Bonaccorsi, E., Merlino, S. and Orlandi, P. (2007) Zincalstibite, a new mineral, and cualstibite: crystal chemical and structural relationships. American Mineralogist, 92, 198203.CrossRefGoogle Scholar
Bonazzi, P. and Mazzi, F. (1996) Bottinoite, Ni(H2O)6[Sb(OH)6]2: crystal structure, twinning, and and hydrogen-bond model. American Mineralogist, 81, 14941500.CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Brown, I.D. (1978) Bond valences – a simple structural model for inorganic chemistry. Chemical Society Reviews, 7, 359378.CrossRefGoogle Scholar
Bruker, (2001) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Christy, A.G. and Putnis, A. (1988) Planar and line defects in the sapphirine polytypes. Physics and Chemistry of Minerals, 15, 548558.CrossRefGoogle Scholar
Christy, A.G. and Zvyagin, B.B. (1994) Polytypsim in minerals. Pp. 106124. in: Advanced Mineralogy VI: Composition, Structure and Properties of Mineral Matter: Concepts, Results and Problems (A.S. Marfunin, editor). Springer-Verlag, New York.Google Scholar
Christy, A.G., Alberius-Hening, P. and Lidin, S.A. (2001) Simulation of diffuse scattering in nonstoichiometric apatites Cd5-Z/2(VO4)3I1-Z and Cd5-Z/ 2(PO4)3Br1-Z: chimney-ladder structures with ladderladder and chimney-ladder coupling. Journal of Solid State Chemistry, 156, 88100.CrossRefGoogle Scholar
Chukanov, N.V., Karpenko, V.Yu., Rastsvetaeva, R.K., Zadov, A.E. and Kuz’mina, O.V. (1999) Khaidarkanite, Cu4Al3(OH)14F3·2H2O, a new mineral from the Khaidarkan deposit, Kyrgyzstan. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 128, 5863.Google Scholar
Cuchet, S. (1995) Seconde occurrence de camérolaïte, Cu4Al2[(HSbO4,SO4)](OH)10(CO3)·2H2O, Val d’Anniviers, Valais, Suisse. Schweizerische mineralogische und petrographische Mitteilungen, 75, 283284.Google Scholar
Deliens, M., Berbain, C. and Favreau, G. (1993) Les anciennes mines de Padern-Montgaillard (Aude) (Géologie, Histoire, Minéralogie). Association Franc¸aise de Microminé ralogie, Languedoc- Roussillon, France, 84 pp.Google Scholar
Dornberger-Schiff, K. (1964) Grundzüge einer Theorie der OD Strukturen aus Schichten. Abhandlungen der Deutschen Akademie der Wissenschaften zu Berlin, Kl. für Chemie, Geologie und Biologie, 3. Berlin, 106 pp.Google Scholar
Dornberger-Schiff, K. and Merlino, S. (1974) Order- Disorder in sapphirine, aenigmatite and aenigmatitelike minerals. Acta Crystallographica, A30, 168173.CrossRefGoogle Scholar
Ďurovič, S. (1997) Fundamentals of OD theory. Pp. 328. in: Modular Aspects of Minerals (S. Merlino, editor). EMU Notes in Mineralogy Vol. 1. Eötvös University Press, Budapest.Google Scholar
Favreau, G., Berbain, C. and Meisser, N. (2003) Cyanophyllite et autres minéraux rares de Padern (Aude). Le Cahier des Micromonteurs, 82, 1723.Google Scholar
Ferraris, G., Makovicky, E. and Merlino, S. (2004) Crystallography of Modular Materials. IUCr Monographs on Crystallography, 15. Oxford University Press, UK, 370pp.Google Scholar
Hager, S.L., Leverett, P. and Williams, P.A. (2009) Possible structural and chemical relationships in the cyanotrichite group. The Canadian Mineralogist, 47, 635648.CrossRefGoogle Scholar
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemical of sulfate minerals. Pp. 1112.in: Sulfate minerals crystallography, geochemistry and environmental significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy, 40. Mineralogical Society of America, Washington, DC.Google Scholar
Henmi, C., Kawahara, A., Henmi, K., Kusachi, I. and Takeuchi, Y. (1983) The 3T, 4T and 5T polytypes of wollastonite from Kushiro, Hiroshima Prefecture, Japan. American Mineralogist, 68, 156163.Google Scholar
Horiuchi, H., Morimoto, N. and Yamaoka, S. (1979) The crystal structure of Li2WO4-II: a structure related to spinel. Journal of Solid State Chemistry, 30, 129135.CrossRefGoogle Scholar
Hyde, B.G. and Andersson, S. (1989) Inorganic Crystal Structures. Wiley-Interscience, New York, 430 pp. Kabsch, W. (2010) XDS. Acta Crystallographica, D66, 125132.Google Scholar
Kolitsch, U., Giester, G. and Pippinger, T. (2013) The crystal structure of cualstibite–1. (formerly cyanophyllite): its revised chemical formula and its relation to cualstibite–1.. Mineralogy and Petrology, 107, 171178.CrossRefGoogle Scholar
Makovicky, E. (1997) Modularity – different types and approaches. Pp. 315343. in: EMU Notes in Mineralogy Vol. 1, Modular Aspects of Minerals (S. Merlino, editor). Eötvös University Press, Budapest.Google Scholar
Merlino, S. and Zvyagin, B.B. (1998) Modular features of sapphirine-type structures. Zeitschrift für Kristallographie, 213, 513521.Google Scholar
Merlino, S., Bonaccorsi, E., Grabezhev, A.I., Zadov, A.E., Pertsev, N.N. and Chukanov, N.V. (2009) Fukalite: An example of OD structure with twodimensional disorder. American Mineralogist, 94, 323333.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Chen, E.C.-C. and Raudsepp, M. (2009) Revised values of the bond valence parameters for [6]Sb(V)–O and [3–11. Sb(III)–O. Zeitschrift für Kristallographie, 224, 423431.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Génin, J.-M.R., Kameda, T. and Colombo, F. (2012a) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 12891336.CrossRefGoogle Scholar
Mills, S.J., Christy, A.G., Kampf, A.R., Housley, R.M., Favreau, G., Boulliard, J.-C. and Bourgoin, V. (2012b) Zincalstibite-9R: the first 9-layer polytype with the layered double hydroxide structure-type. Mineralogical Magazine, 76, 13371345.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., Housley, R.M., Favreau, G., Pasero, M., Biagioni, C., Merlino, S., Berbain, C. and Orlandi , P.(2012c) Omsite, (Ni,Cu)2Fe3+(OH)6[Sb(OH)6], a new member of the cualstibite group from Oms, France. Mineralogical Magazine, 76, 13471354.CrossRefGoogle Scholar
Mills, S.J., Kampf, A.R., McDonald, A.M., Bindi, L., Christy, A.G., Kolitsch, U. and Favreau, G. (2013) The crystal structure of parnauite: a copper arsenatesulphate with translational disorder of structural rods. European Journal of Mineralogy, 25, 693704.CrossRefGoogle Scholar
Nelmes, R.J., Allan, D.R., McMahon, M.I. and Belmonte, S.A. (1999) Self-hosting incommensurate structure of Ba-IV. Physical Review Letters, 83, 40814084.CrossRefGoogle Scholar
Pekov, I.V. (1998) Minerals First Discovered on the Territory of the Former Soviet Union. Ocean Pictures, Moscow, 370 pp.Google Scholar
Rastsvetaeva, R.K., Chukanov, N.V. and Karpenko, V.U. (1997) The crystal structure of a new compound Cu4Al3(OH)14F3(H2O)2 . Doklady Akademii Nauk, 353, 354357. [in Russian, English abstract: American Mineralogist, 83, 188].Google Scholar
Sarp, H. and Perroud, P. (1991) Camerolaite, Cu4Al2[HSbO4,SO4](OH)10(CO3)·2H2O, a new mineral from Cap Garonne mine, Var, France. Neues Jahrbuch für Mineralogie, Monatshefte, 1991, 481486.Google Scholar
Schnorrer, G. and Bacher, F. (2000) Die Mineralien von der Sonnblick-Nordwand, Rauris, Salzburg O. sterreich – insbesondere der erste Khaidarkanit- Fund in Österreich. Mineralien-Welt, 11, 5257.Google Scholar
Sejkora, J., Ondruš, P., Fikar, M., Veselovský, F., Mach, Z., Gabašová, A., Škoda, R. and Beran, P. (2006) Supergene minerals from the Huber stock and Schnöd stock deposits, Krásno ore district, the Slavkovský les area, Czech Republic. Journal of the Czech Geological Society, 51, 57101.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Tse, J.S. (2005) Crystallography of selected high pressure elemental solids. Zeitschrift für Kristallographie, 220, 521530.Google Scholar
Urusov, V.S. (2003) Theoretical analysis and empirical manifestation of the distortion theorem. Zeitschrift für Kristallographie, 218, 709719.Google Scholar
Walenta, K. (1995) Camerolait aus dem Schwarzwald. Aufschluss, 46, 210214.Google Scholar
Walenta, K. (2001) Ein cyanotrichitähnliches Mineral von den Grube Clara. Erzgräber, 15, 2935.Google Scholar
Williams, S.A. (1985) Mopungite, a new mineral from Nevada. Mineralogical Record, 16, 7374.Google Scholar