Skip to main content Accessibility help

Crystal structure and revised chemical formula for burckhardtite, Pb2(Fe3+Te6+)[AlSi3O8]O6: a double-sheet silicate with intercalated phyllotellurate layers

  • Andrew G. Christy (a1), Anthony R. Kampf (a2), Stuart J. Mills (a3), Robert M. Housley (a4) and Brent Thorne...


The crystal structure of burckhardite from the type locality, Moctezuma, Sonora, Mexico, has been refined to R1 = 0.0362 and wR2 = 0.0370 for 215 reflections with I > 2σ(I). Burckhardtite is trigonal, space group P3̄ 1m, with the unit-cell parameters a = 5.2566(5) Å , c = 13.0221(10) Å , V = 311.62(5) Å3 and Z = 1 for the ideal formula unit Pb2(Fe3+Te6+)[AlSi3O8]O6. There is no long-range order of (Fe3+, Te6+) or (Al3+, Si4+). New microprobe data were used to estimate site scattering factors, and Raman spectroscopic data showed no evidence of O–H stretching bands. Burckhardtite is not closely related to the micas, as supposed previously, but is a double-sheet silicate in which the aluminosilicate anion resembles that of minerals such as cymrite and kampfite. The [(Fe3+Te6+)O6]3– part of the structure is not bonded directly to the aluminosilicate layer, but forms a discrete anionic phyllotellurate layer that alternates with the [AlSi3O8] double sheets. Similar phyllotellurate layers are known from several synthetic phases. In burckhardtite, Pb2+ cations intercalate between phyllosilicate and phyllotellurate layers, forming a Pb2[FeTeO6] module that is topologically similar to a slab of the structure of rosiaite, Pb[Sb2O6]. The crystal symmetry, structure, classification as a double-sheet silicate and chemical formula, including the determination of the 6+ valence of Te and absence of essential H2O, are all new findings for the mineral.


Corresponding author


Hide All
Basciano, L.C. and Groat, L.A. (2007) The crystal structure of kampfite. The Canadian Mineralogist, 45, 935–943.
Basso, R., Lucchetti, G., Zefiro, L. and Palenzona, A. (1996) Rosiaite, PbSb2O6, a new mineral from the Cetine mine, Siena, Italy. European Journal of Mineralogy, 8, 487–492.
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192–197.
Brunton, G. (1973) Li2ZrF6. Acta Crystallographica, B29, 2294–2296.
Burla, M.C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G.L., De Caro, L., Giacovazzo, C., Polidori, G. and Spagna, R. (2005) SIR2004: an improved tool for crystal structure determination and refinement. Journal of Applied Crystallography, 38, 381–388.
Chesnokov, B.V., Lotova, E.V., Nigmatulina, E.N., Pavlyuchenko, V.S. and Bushmakin, A.F. (1990) Dmisteinbergite CaAl2Si2O8 (hexagonal) – a new mineral. Zapiski Vsesoyuznogo Mineralogicheskogo Obshchestva, 119, 43–46. [in Russian].
Christy, A.G. and Mills, S.J. (2013) Effect of lone-pair stereoactivity on polyhedral volume and structural flexibility: application to TeIVO6 octahedra. Acta Crystallographica, B69, 446–456.
Drits, V.A., Kashaev, A.A. and Sokolova, G.V. (1975) Crystal-structure of cymrite. Kristallografiya, 20, 280–286. [in Russian].
Fasshauer, D.W., Chatterjee, N.D. and Marler, B. (1997) Synthesis, structure, thermodynamic properties, and stability relations of K-cymrite, K[AlSi3O8]·H2O. Physics and Chemistry of Minerals, 24, 455–462.
Fintor, K., Walter, H. and Nagy, Sz. (2013) Petrographic and micro-Raman analysis of chondrules and (Ca,Al)-rich inclusions of NWA 2086 CV3 type carbonaceous chondrite. Lunar and Planetary Science, 44, 1152.
Gaines, R.V., Leavens, P.B. and Nelen, J.A. (1979) Burckhardtite, a new silicate-tellurite from Mexico. American Mineralogist, 64, 355–358.
Génin, J.-M.R., Mills, S.J., Christy, A.G., Guérin, O., Herbillon, A.J., Kuzmann, E., Ona-Nguema, G., Ruby, C. and Upadhyay, C. (2014) Mössbauerite, Fe3+ 6 O4(OH)8[CO3]·3H2O, the fully oxidized ‘green rust’ mineral from Mont Saint-Michel Bay, France. Mineralogical Magazine, 78, 447–465.
Graham, C.M., Tareen, J.A.K., McMillan, P.F. and Lowe, B.M. (1992) An experimental and thermodynamic study of cymrite and celsian stability in the system BaO–Al2O3–SiO2–H2O. European Journal of Mineralogy, 4, 251–269.
Higashi, T. (2001) ABSCOR. Rigaku Corporation, Tokyo.
Hwang, S.-L., Shen, P., Chu, H.-T., Yui, T.-F., Liou, J.G., Sobolev, N.V., Zhang, R.-Y., Shatsky, V.S. and Zayachkovsky, A.A. (2004) Kokchetavite: a new potassium-feldspar polymorph from the Kokchetav ultrahigh-pressure terrane. Contributions to Mineralogy and Petrology, 148, 380–389.
Ibers, J.A. and Hamilton, W.C. (editors) (1974) International Tables for X-ray Crystallography, Vol. IV. Kynock, Dordrecht, The Netherlands, 366 pp.
Kampf, A.R., Housley, R.M., Mills, S.J., Marty, J. and Thorne, B. (2010) Lead-tellurium oxysalts from Otto Mountain near Baker, California: I. Ottoite, Pb2TeO5, a new mineral with chains of tellurate octahedra. American Mineralogist, 95, 1329–1336.
Kampf, A.R., Mills, S.J., Housley, R.M., Rossman, G.R., Marty, J. and Thorne, B. (2013a) Leadtellurium oxysalts from Otto Mountain near Baker, California: X. Bairdite, Pb2Cu2+ 4 Te6+ 2 O10(OH)2 (SO4)(H2O), a new mineral with thick HCP layers. American Mineralogist, 98, 1315–1321.
Kampf, A.R., Mills, S.J., Housley, R.M., Rossman, G.R., Marty, J. and Thorne, B. (2013b) Leadtellurium oxysalts from Otto Mountain near Baker, California: XI. Eckhardite, (Ca,Pb)Cu2+Te6+O5 (H2O), a new mineral with HCP stair-step layers. American Mineralogist, 98, 1617–1623.
Kanzaki, M., Xue, X., Amalberti, J. and Zhang, Q. (2012) Raman and NMR spectroscopic investigation of high-pressure K-cymrite (KAlSi3O8·H2O) and its anhydrous form (kokchetavite). Journal of Mineralogical and Petrological Sciences, 107, 114–119.
Kasper, H.M. (1969) LnCrTeO6 – a new series of compounds based on the PbSb2O6 structure. Materials Research Bulletin, 4, 33–37.
Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an artifact of the bond valence parameters? Zeitshcrift für Kristallographie, 216, 245–247.
Liebau, F. (1985) Structural Chemistry of Silicates: Structure, Bonding and Classification. Springer- Verlag, New York, 347 pp.
Magnéli, A. (1941) The crystal structure of lead metaantimonate and isomorphous compounds. Arkiv för Kemi, Mineralogi och Geologi, B15, 1–6.
Mills, S.J., Bindi, L., Cadoni, M., Kampf, A.R., Ciriotti, M.E. and Ferraris, G. (2012a) Paseroite, PbMn2+(Mn2+,Fe2+)2(V5+,Ti,Fe3+,&)18O38, a new member of the crichtonite group. European Journal of Mineralogy, 24, 1061–1067.
Mills, S.J., Christy, A.G., Kameda, T., Génin, J.-M.R. and Colombo, F. (2012b) Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Mineralogical Magazine, 76, 1289–1336.
Mills, S.J. and Christy, A.G. (2013) Revised values of the bond valence parameters for TeIV–O, TeVI–O and TeIV–Cl. Acta Crystallographica, B69, 145–149.
Mills, S.J., Kampf, A.R., Christy, A.G., Housley, R.M., Rossman, G.R., Reynolds, R.E. and Marty, J. (2014) Bluebellite and mojaveite, two new minerals from the central Mojave Desert, California, USA. Mineralogical Magazine, 78, 1325–1340.
Phatak, R., Krishnan, K., Kulkarni, N.K., Achary, S.N., Banerjee, A. and Sali, S.K. (2010) Crystal structure, magnetic and thermal properties of LaFeTeO6. Materials Research Bulletin, 45, 1978–1983.
Rinaldi, R., Sacerdoti, M. and Passaglia, E. (1990) Strätlingite: crystal structure, chemistry, and a reexamination of its polytype vertumnite. European Journal of Mineralogy, 2, 841–849.
Sacerdoti, M. and Passaglia, E. (1988) Hydrocalumite from Latium, Italy – its crystal structure and relationship with related synthetic phases. Neues Jahrbuch für Mineralogie Monatshefte, 1988, 462–475.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
Takéuchi, Y. and Donnay, G. (1959) The crystal structure of hexagonal CaAl2Si2O8. Acta Crystallographica, 12, 465–470.
Walstrom, R.E. (2012) "The Accidental Pocket, Cochise County, Arizona". Northern California Mineralogical Society Annual Meeting, 2012. Cited in http:// Accessed on 18 June 2014.
Woodward, P.M., Sleight, A.W., Du, L.-S. and Grey, C.P. (1999) Structural studies and order-disorder phenomenon in a series of new quaternary tellurates of the type A2+M4+Te6+O6 and A1+ 2 M4+Te6+O6 . Journal of Solid State Chemistry, 147, 99–116.
Wulff, L. and Müller-Buschbaum, H. (1998) Isolierte trigonale SrO6–Prismen verknüpfen Kagomé-Netze im Strontium-Manganat(IV)-Tellurat(VI): SrMnTeO6. Zeitschrift für Naturforschung B. A Journal in Chemical Sciences, 53, 283–286.
Yin, Y.B. and Keszler, D.A. (1992) Crystal-chemistry of colquiriite-type fluorides. Chemistry of Materials, 4, 645–648.
Zhang, R.Y., Liou, J.G., Iizuka, Y. and Yang, J.S. (2009) First record of K-cymrite in North Qaidam UHP eclogite, Western China. American Mineralogist, 94, 222–228.


Related content

Powered by UNSILO

Crystal structure and revised chemical formula for burckhardtite, Pb2(Fe3+Te6+)[AlSi3O8]O6: a double-sheet silicate with intercalated phyllotellurate layers

  • Andrew G. Christy (a1), Anthony R. Kampf (a2), Stuart J. Mills (a3), Robert M. Housley (a4) and Brent Thorne...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.