Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-25T00:25:01.676Z Has data issue: false hasContentIssue false

Crystal chemistry of natural layered double hydroxides. 2. Quintinite-1M: first evidence of a monoclinic polytype in M2+-M3+ layered double hydroxides

Published online by Cambridge University Press:  05 July 2018

S. V. Krivovichev*
Affiliation:
Department of Crystallography, Faculty of Geology, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, Apatity, Russia
V. N. Yakovenchuk
Affiliation:
Geological Institute, Kola Science Center, Russian Academy of Sciences, Apatity, Russia
E. S. Zhitova
Affiliation:
Department of Crystallography, Faculty of Geology, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
A. A. Zolotarev
Affiliation:
Department of Crystallography, Faculty of Geology, St. Petersburg State University, University Emb. 7/9, 199034 St. Petersburg, Russia
Y. A. Pakhomovsky
Affiliation:
Geological Institute, Kola Science Center, Russian Academy of Sciences, Apatity, Russia
G. Yu. Ivanyuk
Affiliation:
Nanomaterials Research Center, Kola Science Center, Russian Academy of Sciences, Apatity, Russia Geological Institute, Kola Science Center, Russian Academy of Sciences, Apatity, Russia
*

Abstract

Quintinite-1M, [Mg4Al2(OH)12](CO3)(H2O)3, is the first monoclinic representative of both synthetic and natural layered double hydroxides (LDHs) based on octahedrally coordinated di- and trivalent metal cations. It occurs in hydrothermal veins in the Kovdor alkaline massif, Kola peninsula, Russia. The structure was solved by direct methods and refined to R1 = 0.031 on the basis of 304 unique reflections. It is monoclinic, space group C2/m, a = 5.266(2), b = 9.114(2), c = 7.766(3) Å, β = 103.17(3)°, V = 362.9(2) Å3. The diffraction pattern of quintinite-1M contains sharp reflections corresponding to the layer stacking sequence characteristic of the 3R rhombohedral polytype, and rows of weak superlattice reflections superimposed upon a background of streaks of modulated diffuse intensity parallel to c*. These superlattice reflections indicate the formation of a 2-D superstructure due to Mg-Al ordering. The structure consists of ordered metal hydroxide layers and a disordered interlayer. As the unit cell contains exactly one layer, the polytype nomenclature dictates that the mineral be called quintinite-1M. The complete layer stacking sequence can be described as …=Ac1B=Ba1C=Cb1A=… Quintinite-1M is isostructural with the monoclinic polytype of [Li2Al4(OH)12](CO3)(H2O)3.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bookin, A.S. and Drits, V.A. (1993) Polytype diversity of the hydrotalcite-like minerals. I. Possible poly-types and their diffraction patterns. Clays and Clay Minerals, 41, 551557.CrossRefGoogle Scholar
Britto, S. and Kamath, P.V. (2009) Structure of bayerite-based lithium–aluminum layered double hydroxides (LDHs): observation of monoclinic symmetry. Inorganic Chemistry, 48, 1164611654.CrossRefGoogle ScholarPubMed
Britto, S., Thomas, G.S., Kamath, P.V. and Kannan, S. (2008) Polymorphism and structural disorder in the carbonate containing layered double hydroxide of Li with Al. Journal of Physical Chemistry C112, 95109515.Google Scholar
Fogg, A.M., Dunn, I.S., Shyu, S.-G., Cary, D.R. and O'Hare, D. (1998) Selective ion-exchange intercalation of isomeric dicarboxylate anions into the layered double hydroxide [LiAl2(OH)6]Cl-H2O. Chemistry of Materials, 10, 351355.CrossRefGoogle Scholar
Fogg, A.M., Green, V.M., Harvey, H.G. and O'Hare, D. (1999) New separation science using shape-selective ion exchange intercalation chemistry. Advanced Materials, 11, 14661469.3.0.CO;2-1>CrossRefGoogle Scholar
Fogg, A.M., Freij, A.J. and Parkinson, G.M. (2002) Synthesis and anion exchange chemistry of rhombo-hedral Li/Al layered double hydroxides. Chemistry of Materials, 14, 232234.CrossRefGoogle Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Zhitova, E.S., Zolotarev, A.A., Pakhomovsky, Ya.A. and Ivanyuk, G.Yu. (2010) Crystal chemistry of natural layered double hydroxides. 1. Quintinite-2H-3c from the Kovdor alkaline massif, Kola peninsula, Russia. Mineralogical Magazine 74, 821832.CrossRefGoogle Scholar
Lei, L., Zhang, L., Hu, M. and Zheng, H. (2006) Alkaline hydrolysis of dimethyl terephthalate in the presence of [LiAl2(OH)6]Cl-2H2O. Journal of Solid State Chemistry, 179, 35623567.CrossRefGoogle Scholar
Serna, C.J., Rendon, J.L. and Iglesias, J.E. (1982) Crystal-chemical study of layered [Al2Li(OH)6]+ X-nH2O. Clays and Clay Minerals, 30, 180184.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sissoko, I., Iyagba, E.T., Sahai, R. and Biloen, P. (1985) Anion intercalation and exchange in Al(OH)3-derived compounds. Journal of Solid State Chemistry, 60, 283288.CrossRefGoogle Scholar
Stoe (1997) X-Area 1.42.Google Scholar
Thiel, J.P., Chiang, C.K. and Poeppelmeier, K.R. (1993) Structure of lithium aluminum hydroxide dehydrate LiAl2(OH)7-2H2O. Chemistry of Materials, 5, 297304.CrossRefGoogle Scholar