Skip to main content Accessibility help
×
Home

Consequence modelling of hypothetical post-closure criticality events for spent fuel disposal

  • R. M. Mason (a1), J. K. Martin (a1), P. N. Smith (a1) and R. J. Winsley (a2)

Abstract

In support of the Radioactive Waste Management (RWM) safety case for a geological disposal facility (GDF) in the UK, there is a regulatory requirement to consider the likelihood and consequences of nuclear criticality. Waste packages are designed to ensure that criticality is not possible during the transport and operational phases of a GDF and for a significant period post-closure. However, over longer post-closure timescales, conditions in the GDF will evolve.

For waste packages containing spent fuel, it can be shown that, under certain conditions, package flooding could result in a type of criticality event referred to as 'quasi-steady-state' (QSS). Although unlikely, this defines a 'what-if' scenario for understanding the potential consequences of post-closure criticality. This paper provides an overview of a methodology to understand QSS criticality and its application to a spent fuel waste package.

The power of such a hypothetical criticality event is typically estimated to be a few kilowatts: comparable with international studies of similar systems and the decay heat for which waste packages are designed. This work has built confidence in the methodology and supports RWM's demonstration that post-closure criticality is not a significant concern.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Consequence modelling of hypothetical post-closure criticality events for spent fuel disposal
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Consequence modelling of hypothetical post-closure criticality events for spent fuel disposal
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Consequence modelling of hypothetical post-closure criticality events for spent fuel disposal
      Available formats
      ×

Copyright

Copyright © The Mineralogical Society of Great Britain and Ireland 2015. This is an open access article, distributed under the terms of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

References

Hide All
Environment Agency, Northern Ireland Environment Agency (2009) Geological Disposal Facilities on Land for Solid Radioactive Wastes: Guidance on Requirements for Authorisation. Environment Agency, Northern Ireland Environment Agency.
Hicks, T.W and Baldwin, T.D. (2014) Likelihood of Criticality: The Likelihood of Criticality Synthesis Report. AMEC Report to the Nuclear Decommissioning Authority, 17293-TR-022 Version 2.
Mason, R.M. and Smith, P.N. (2013) Modelling of consequences of hypothetical criticality: User guide for the rapid transient model and the bounding approach. AMEC Report to the Nuclear Decommissioning Authority, AMEC/SF2409/005 Issue 1.
Mason, R.M. and Smith, P.N. (2015a) Modelling of consequences of hypothetical criticality: Post-closure criticality consequence analysis for ILW, LLW and DNLEU disposal. AMEC Report to the Nuclear Decommissioning Authority, AMEC/SF2409/011 Issue 3.
Mason, R.M. and Smith, P.N. (20156) Modelling of consequences of hypothetical criticality: Post-closure criticality consequence analysis for HLW, spent fuel, plutonium and HEU disposal. AMEC Report to the Nuclear Decommissioning Authority, AMEC/ SF2409/012 Issue 3.
Mason, R.M., Cummings, R., Kudelin, Y, Martindill, J., Smith, PI and Smith, P.N. (2009) A suite of calculations using the QSS and RTM computer models. Serco Report to the Nuclear Decommissioning Authority, SA/ENV-0944 Issue 2.
Mason, R.M., Cummings, R., Kudelin, Y, Martindill, J., Smith, P.J. and Smith, EN. (2010) Further calculations using the QSS and RTM computer models. Serco Report to the Nuclear Decommissioning Authority, SERCO/TAS-1004 Issue 4.
Mason, R.M., Smith, P.N., Turland, B.D. and Jackson, C.P. (201 2a) The consequences of hypothetical criticality. MineralogicalMagazine, 76, 31553163.
Mason, R.M., Martin, IK., Smith, P.N. and Turland, B.D. (20126) Comparison of a post-closure transient criticality model with the Oklo natural reactors. Mineralogical Magazine, 76, 31453153.
Mason, R.M., Smith, P.N. and Holton, D. (2014) Modelling of consequences of hypothetical criticality: Synthesis report for post-closure criticality consequence analysis. AMEC Report to the Nuclear Decommissioning Authority, AMEC/SF2409/013 Issue 2.
Newton, T, Hosking, G., Hutton, L., Powney, D., Turland, B. and Shuttleworth, T (2008) Developments within WIMS10. PHYSOR Meeting, Interlaken, Switzerland.
Nuclear Decommissioning Authority (2010a) Geological Disposal: An Introduction to the generic Disposal System Safety Case. NDA Report no. NDA/RWMD/061.
Nuclear Decommissioning Authority (20106) Geological Disposal: Generic Environmental Safety Case Main Report. NDA Report no. NDA/RWMD/030.
Nuclear Decommissioning Authority (2010c) Geological Disposal: Criticality Safety Status Report. NDA Report no. NDA/RWMD/038.
Richards, S.D., Baker, C.M.J., Bird, A.J., Cowan, P., Davies, N., Dobson, G.P, Fry, T.C., Kyrieleis, A. and Smith, PN. (2014) MONK and MCBEND: Current Status and Recent Developments. Annals of Nuclear Energy, 82, 6373. http://dx.doi.Org/10.1016/j.anucene.2014.07.054
Smith, P.N. and Mason, R.M. (2015) Modelling of Consequences of Hypothetical Criticality: User Guide for the QSS Model. AMEC Report to the Nuclear Decommissioning Authority, AMEC/ SF2409/006 Issue 2.
Winsley, R.J., Baldwin, T.D., Hicks, T.W., Mason, R.M. and Smith, PN. (2015) Understanding the likelihood and consequences of post-closure criticality in a geological disposal facility. Mineralogical Magazine, 79, DOI: 10.1180/minmag.2015.079.6.30

Keywords

Related content

Powered by UNSILO

Consequence modelling of hypothetical post-closure criticality events for spent fuel disposal

  • R. M. Mason (a1), J. K. Martin (a1), P. N. Smith (a1) and R. J. Winsley (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.