Skip to main content Accessibility help
×
Home

The concept of ‘end of waste’ and recycling of hazardous materials: in depth characterization of the product of thermal transformation of cement-asbestos

  • A. Croce (a1), M. Allegrina (a1), P. Trivero (a1), C. Rinaudo (a1), A. Viani (a2) (a3), S. Pollastri (a4) and A. F. Gualtieri (a4)...

Abstract

Selected samples of asbestos-containing material (ACM) with different Ca/Si ratios have been treated thermally at 1200°C for 15 min to obtain an ‘end of waste geo-inspired material’. Before and after treatment, micro-Raman spectroscopy allowed the investigation of both powdered and massive samples by directing the laser beam onto crystals with elongated morphology, thin fibres and the matrix. In the raw samples, chrysotile and/or crocidolite were detected. After the thermal treatment, no asbestos phases were identified in the Raman spectra collected on fibrous or fibre-like morphologies. The scanning electron microscopy/energy dispersive spectroscopy investigations confirmed the onset of a pseudomorphic process during annealing, leading to the complete transformation of asbestos minerals into non-hazardous magnesium or calcium magnesium silicates such as forsterite, monticellite, a˚kermanite and merwinite.

The identification of such mineral assemblages was inspired by the close inspection of a natural counterpart, the high-temperature contact metamorphic imprint due to the intrusion of a sill into carbonate rocks. The process turned out to occur largely at the solid state and involved substantial mobilization of Ca and Mg to form a spinel phase (namely MgFe2O4) which was recognized in the matrix and within, or close to elongated morphologies.

Copyright

Corresponding author

References

Hide All
Abruzzese, C., Marabini, A.M., Paglietti, F. and Plescia, P. (1998) CORDIAM process: A new treatment for asbestos wastes. Pp. 563–577 in: EPD Congress, San Antonio, Texas, U. (B. Mishra, editor). TMS Springer, Boston, US.
Ball, M.C., and Taylor, H.F.W. (1963) The dehydration of chrysotile in air and under hydrothermal conditions. Mineralogical Magazine, 33, 467–482.
Belluso, E., Fornero, E., Cairo, S., Albertazzi, G. and Rinaudo, C. (2007) The application of micro-Raman spectroscopy to distinguish carlosturanite from serpentine-group minerals. The Canadian Mineralogist, 45, 1495–1500.
Bernardo, E., Esposito, L., Rambaldi, E. and Tucci, A. (2011) Sintered glass ceramic articles from plasma vitrified asbestos containing waste. Advances in Applied Ceramics, 110, 346–352.
Boccaccini, D.N., Leonelli, C., Rivasi, M.R., Romagnoli, M., Veronesi, P., Pellacani, G.C., and Boccaccini, R. (2007) Recycling of microwave inertised asbestos containing waste in refractory materials. Journal of the European Ceramic Society, 27, 1855–1858.
Borderes, A. (2000) Vitrification of the incineration residues. Revue Verre, 6, 1–2.
Brousse, C., Newton, R.C., and Kleppa, O.J., (1984) Enthalpy of formation of forsterite, enstatite, akermanite, monticellite and merwinite at 1073 K determined by alkali borate solution calorimetry. Geochimica et Cosmochimica Acta, 48, 1081–1088.
Cattaneo, A., Gualtieri, A.F., and Artioli, G. (2003) Kinetic study of the dehydroxylation of chrysotile asbestos with temperature by in situ XRPD. Physics and Chemistry of Minerals, 30, 177–183.
Chopelas, A. (1991) Single crystal Raman spectra of forsterite, fayalite, and monticellite. American Mineralogist, 76, 1101–1109.
Deegan, D., Chapman, C., Ismail, S.A., Wise, M.L.H. and Ly, H. (2006) The thermal treatment of hazardous wastes materials using Plasma Arc technology. IMechE Conference. Delivering Waste Solutionsu`Balancing Targets, Incentives and Infrastructure, vol. 9, IMechE London.
Dellisanti, F., Rossi, P.L., and Valdre`, G. (2009) Remediation of asbestos containing materials by Joule heating vitrification performer in a pre-pilot apparatus, International Journal of Mineral Processing, 91, 61–67.
Giacobbe, C., Gualtieri, A.F., Quartieri, S., Rinaudo, C., Allegrina, M. and Andeozzi, G.B., (2010) Spectroscopic study of the product of thermal transformation of chrysotile-asbestos containing materials (ACM). European Journal of Mineralogy, 22(4), 533–546.
Gualtieri, A.F., (2013) Recycling asbestos-containing material (ACM) from construction and demolition waste (CDW). Pp. 500–525 in: Handbook of recycled concrete and demolition waste, (F. Pacheco-Torgal, V.W.Y. Tam, J.A., Labrincha, Y. Ding and J. De Brito, editors) Woodhead Publishing series in Civil and Structural Engineering, Cambridge, UK
Gualtieri, A.F., and Boccaletti, M. (2011) Recycling of the product of thermal inertization of cement– asbestos for the production of concrete. Construction and Building Materials 25, 3561–3569.
Gualtieri, A.F., and Tartaglia, A. (2000): Thermal decomposition of asbestos and recycling in traditional ceramics. Journal of the European Ceramic Society, 20, 9, 1409–1418.
Gualtieri, A.F., Levy, D., Belluso, E. and Dapiaggi, M. (2004) Kinetics of the decomposition of crocidolite asbestos: a preliminary real-time x-ray powder diffraction study. Materials Science Forum, 443–444, 291–294.
Gualtieri, A.F., Cavenati, C., Zanatto, I., Meloni, M., Elmi, G. and Lassinantti, M. (2008a) The transformation sequence of cement-asbestos slates up to 1200°C and safe recycling of the reaction product in stoneware tile mixtures. Journal of Hazardous Materials, 152, 563–570.
Gualtieri, A.F., Lassinantti Gualtieri, M. and Tonelli, M. (2008b) In situ ESEM study of the thermal decomposition of chrysotile asbestos in view of safe recycling of the transformation product. Journal of Hazardous Materials, 156, 260–266.
Gualtieri, A.F., Giacobbe, C., Sardisco, L., Saraceno, M., Gualtieri, M.L., Lusvardi, G., Cavenati, C. and Zanatto, I. (2011) Recycling of the product of thermal inertization of cement–asbestos for various industrial applications. Waste Management, 31, 91–100.
Gualtieri, A.F., Veratti, L., Tucci, A. and Esposito, L. (2012) Recycling of the product of thermal inertization of cement-asbestos in geopolymers Construction and Building Materials, 31, 47–51.
Ibán˜ ez, J., Artús, L., Cuscó , R., López, A. . Menéndez, E. and Andrade, M.C., (2007) Hydration and carbonation of monoclinic C2S and C3S studied by Raman spectroscopy. Journal of Raman Spectroscopy, 38, 61–67.
Joachim, B., Gardés, E., Abart, R. and Heinrich, W. (2011) Experimental growth of a˚kermanite reaction rims between wollastonite and monticellite: evidence for volume diffusion control. Contribution to Mineralogy and Petrology, 161, 389–399.
Mackenzie, K. J. D. and Meinhold, R.H., (1994) Thermal reactions of chrysotile revisited: A 29Si and 25Mg MAS NMR study. American Mineralogist, 79, 43–50.
Martin, C.J., (1977) The thermal decomposition of chrysotile. Mineralogical Magazine, 35, 189–195.
Martinez-Ramirez, S., Frías, M. and Domingo, C. (2006) Micro-Raman spectroscopy in white Portland cement hydration: long-term study at room temperature. Journal of Raman Spectroscopy, 37, 555–561.
Nakagomi, F., da Silva, S.W., Garg, V.K., Oliveira, A.C., Morais, P.C., and Franco, A. Jr. (2009) Influence of the Mg-content on the cation distribution in cubic MgxFe3–xO4 nanoparticles. Journal of Solid State Chemistry, 182, 2423–2429.
Owens, B.E., (2000) High-temperature contact metamorphism of calc-silicate xenoliths in the Kiglapait Intrusion, Labrador. American Mineralogist, 85, 1595–1605.
Palandri, A., Gilot, P. and Prado, G. (1993) A kinetic study of the decarbonation of CaCO3 . Journal of Analytical and Applied Pyrolysis, 27, 119–130.
Peškova, S. ., Machovič, V. and Procházka, P. (2011) Raman spectroscopy structural study of fired concrete. Ceramics – Silikáty, 55(4), 410–417.
Rinaudo, C., Belluso, E. and Gastaldi, D. (2004) Assessment of the use of Raman spectroscopy for the determination of amphibole asbestos. Mineralogical Magazine, 68, 455–465.
Rinaudo, C., Gastaldi, D. and Belluso, E. (2003) Characterization of chrysotile, antigorite and lizardite by FT-Raman Spectroscopy. The Canadian Mineralogist, 41, 883–890.
Rinaudo, C., Gastaldi, D., Belluso, E. and Capella, S. (2005) Application of Raman Spectroscopy on asbestos fibre identification. Neues Jahrbuch für Mineralogie, 182(1), 31–36.
Sharma, S.K., Yoder, H.S. Jr., and Matson, D.W (1988) Raman study of some melilites in crystalline and glassy states. Geochimica et Cosmochimica Acta, 52(8), 1961–1967.
Sharp, Z.D., Essene, E.J., Anovitz, L.M., Metz, G.W., Westrum, E.F. Jr., Hemingway, B.S., and Valley, J.W., (1986) The heat capacity of a natural monticellite and phase equilibria in the system CaO–MgO–SiO2–CO2 . Geochimicaet Cosmochimica Acta, 50, 1475–1484.
Shmulovich, K.I., (1969) Stability of merwinite in the system CaO–MgO–SiO2–CO2 . Doklady Akademii Nauk SSSR, 184, 1177–1179.
Trindade, M.J., Dias, M.I., Coroado, J. and Rocha, F. (2009) Mineralogical transformations of calcareous rich clays with firing: A comparative study between calcite and dolomite rich clays from Algarve, Portugal. Applied Clay Science, 42, 345–355.
Viani, A. and Gualtieri, A.F., (2013a) Recycling the product of thermal transformation of cementasbestos for the preparation of calcium sulfoaluminate clinker. Journal of Hazardous Materials, 260, 813–818.
Viani, A. and Gualtieri, A.F., (2014) Preparation of magnesium phosphate cement by recycling the product of thermal transformation of asbestos containing wastes. Cement and Concrete Research, 58, 56–66.
Viani, A., Gualtieri, A.F., Secco, M., Peruzzo, L., Artioli, G. and Cruciani, G. (2013a) Crystal chemistry of cement-asbestos. American Mineralogist, 98, 1095–1105.
Viani, A., Gualtieri, A.F., Pollastri, S., Rinaudo, C., Croce, A. and Urso, G. (2013b) Crystal chemistry of the high temperature product of transformation of cement-asbestos. Journal of Hazardous Materials, 248/249, 69–80.
Viti, C., Giacobbe, C. and Gualtieri, A.F., (2011) Quantitative determination of chrysotile in massive serpentinites using DTA: Implications for asbestos determinations. American Mineralogist, 96, 1003–1011.

Keywords

The concept of ‘end of waste’ and recycling of hazardous materials: in depth characterization of the product of thermal transformation of cement-asbestos

  • A. Croce (a1), M. Allegrina (a1), P. Trivero (a1), C. Rinaudo (a1), A. Viani (a2) (a3), S. Pollastri (a4) and A. F. Gualtieri (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed