Skip to main content Accessibility help

Chlorine content and crystal chemistry of dellaite from the Birkhin gabbro massif, Eastern Siberia, Russia

  • T. Armbruster (a1), B. Lazic (a1), F. Gfeller (a1), E. V. Galuskin (a2), I. O. Galuskina (a2), V. B. Savelyeva (a3), A. E. Zadov (a4), N. N. Pertsev (a5) and P. Dzierżanowski (a6)...


Dellaite crystals of close to end-member composition, Ca6(Si2O7)(SiO4)(OH)2, and with ∼1.5 wt.% Cl. yielding Ca6(Si2O7)(SiO4)(OH)1.75Cl0.25 have been found in skarns within the gabbroid rocks of the Birkhin complex (Eastern Siberia, Russia). The greatest Cl content analysed in a dellaite domain in this skarn is 5.2 wt.% Cl corresponding to 0.8 Cl p.f.u. Dellaite occurs in altered merwmite-larnite-bredigite-gehlenite skarns and also in calcio-olivine skarns with residual larnite. The crystal structures of Cl-free and Cl-bearing (∼1.5 wt.% Cl) dellaite have been refined, including hydrogen positions, from single-crystal X-ray data to R1 = 3.7 and 3.8%, respectively. In addition, both dellaite varieties were studied by Raman spectroscopy indicating stronger hydrogen bonds for the Cl-bearing sample, which agrees with the structural data. Cl is strongly selective and enriches at one (O6) of the two OH positions allowing for the formation of a stronger hydrogen bond O8—H8…C16 compared to O8—H8…O6. Raman spectra of the domain with ∼0.8 Cl p.f.u. confirm the general enhancement of a low-frequency band in the OH range suggesting the dominance of the O—H…Cl hydrogen bond systems.

Dellaite and killalaite, Ca3.2(H0.6Si2O7)(OH), have related modular structures, differentiated only by the Si2O7 units in killalaite and alternating Si2O7 and SiO4 units in dellaite. The similarity in cell dimensions and chemical composition suggests that trabzonite, Ca4Si3Oi0-2H2O, with Si3Oi0 trimers also belongs to the same family of structures.


Corresponding author


Hide All
Agrell, S.O. (1965) Polythermal metamorphism of limestones at Ki l choan, Ardnamurchan. Mineralogical Magazine, 34, 1–15.
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244–247.
Bruker, (1999) SMART and SAINT-Plus. Versions 6.01. Bruker AXS Inc.,Madison, Wisconsin, USA.
Dent-Glasser, L. and Roy, D.M. (1959) Further studies on 6CaO·3SiO2·H2O. American Mineralogist, 44, 447–451.
Dent-Glasser, L.S., Funk, H., Hilmer, W. and Taylor, H.F.W. (1961) The identity of some dicalcium silicate hydrates. Journal of Applied Chemistry, 11, 186–190.
Flint, E.P., McMurdie, H.F. and Wells, L.S. (1938) Formation of hydrated calcium silicates at elevated temperatures and pressures. Journal of Research, National Bureau of Standards, 21, 617–638.
Funk, H. (1958) Chemische Untersuchungen von Silicaten. XXII. Über Produkte der Wassereinwirkung auf verschiedene Formen des Ca2SiO4 bei 120° bis 350° C und ihre Bildungsbedingungen. Zeitschrift für anorganische und allgemeine Chemie, 297, 103–120.
Ganiev, R.M., Ilyukhin, V.V. and Belov, N.V. (1970) Crystal structure of cement phase Y = Ca6[Si2O7][SiO4](OH)2 . Doklady Akademii Nauk SSSR, 190, 831–834.(in Russian).
Garbev, K., Gasharova, B., Beuchle, G., Kreisz, S. and Stemmermann, P. (2008) First observation of α-Ca2[SiO3(OH)](OH)-Ca6[Si2O7][SiO4](OH)2 phase transformation upon thermal treatment in air. Journal of the American Ceramic Society, 91, 263–271.
Howie, R.A. and Ilyukhin, V.V. (1977) Crystal structure of rustumite. Nature, 269, 231.
Hu, X., Yanagisawa, K., Onda, A. and Kajiyoshi, K. (2006) Stability and phase relations of dicalcium silicate hydrate under hydrothermal conditions. Journal of the Ceramic Society of Japan, 114, 174–179.
Jander, W. and Franke, B. (1941) Die Bildung von Calciumhydrosilikaten aus Calciumoxyd und Kieselsäuregel bei 300° und 350°C und hohen Drucken. III. Mitteilung über hydrothermale Reaktionen. Zeitschrift für anorganische und allgemeine Chemie, 247, 161–179.
Kusachi, I., Henmi, C. and Henmi, K. (1984) The occurrences of killalaite and associated minerals from Kushiro-Uenotani outcrop, Tojo, Hiroshima. Koubutsu-Gakkai Kou’en-Youshi, 100 (in Japanese).
Lazic, B., Armbruster, T., Savelyeva, V.B., Zadov, A.E., Pertsev, N.N. and Dzierżanowski, P. (2011) Galuskinite, Ca7(SiO4)3(CO3), a new skarn mineral from the Birkhin gabbro massif, Eastern Siberia, Russia. Mineralogical Magazine, 75, in press.
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 1047–1059.
Nawaz, R. (1974) Killalaite, a new mineral from Co. Sligo, Ireland. Mineralogical Magazine, 39, 544–548.
Nawaz, R. (1977) A second occurrence of killalaite. Mineralogical Magazine, 41, 546–548.
Roy, D.M. (1958) Studies in the system CaO-Al2O3-SiO2-H2O IV; phase equilibria in the high-lime portion of the system CaO-SiO2-H2O. American Mineralogist, 43, 1009–1028.
Safronov, A.N., Nevsky, N.N., Ilyukhin, V.V. and Belov, N.V. (1981) The refinement of the crystal structure of the cement phase Y-C6S3H, Doklady Akademii Nauk SSSR, 256, 1387–1389 (in Russian).
Sarp, H. and Burri, G. (1986) Trabzonite Ca4Si3O10·2H2O a new hydrated silicate. Schweizerische Mineralogische Petrographische Mitteilungen, 66, 453.
Sarp, H., Deferne, J. and Sarman, E. (1982a) Second occurrence of killalaite in a skarn from the Guneyce-Ikizdere region (eastern Pontids, Turkey). Archives des Sciences Geneve, 35, 275–278.
Sarp, H., Deferne, J. and Sarman, E. (1982b) Metamorphisme polythermal de Güneyce-Ikizdere (Pontides Orientales, Turquie) et quelques precisions sur les conditions de formation de la defernite. Archives des Sciences Geneve, 35, 279–288.
Sheldrick, G.M. (1996) SADABS. University of Göttingen, Germany.
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.
Shimazaki, H., Miyawaki, R., Yokoyama, K., Matsubara, S. and Bunno, M. (2008) Occurrence and new data of dellaite from the Akagane mine, Japan. Journal of Mineralogical and Petrological Sciences, 103, 385–389.
Speakman, K., Taylor, H.F.W., Bennett, J.M. and Gard, J.A. (1967) Hydrothermal reactions of γ-dicalcium silicate. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1052–1060.
Takechi, Y., Kusachi, I., Nakamuta, Y. and Kase, K. (2000) Nickel-bearing djerfisherite in gehlenitespurrite skarn at Kushiro, Hiroshima Prefecture, Japan. Resource Geology, 50, 179–184.
Taylor, H.F.W. (1977) The crystal structure of killalaite. Mineralogical Magazine, 41, 363–369.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed