Skip to main content Accessibility help
×
Home

Characteristics of halloysite associated with rectorite from Hubei, China

  • H.-L. Hong (a1) and J.-X. Mi (a2)

Abstract

The mineralogical characteristics of halloysite in rectorite pelite in the Zhongxiang area, Hubei, China, were investigated using X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy methods. The results show that halloysite crystals exhibit euhedral lamellar, tubular or club-like, and needle-like or fibre-like morphologies, indicating that they crystallized from a significantly water-saturated environment. The mineral assemblage of the rectorite pelite is rectorite, halloysite, illite, gypsum, pyrite and rutile, suggesting a weak supergene alteration. Several features related to crystallization of halloysite were noted. Growth of halloysite on rectorite edge surfaces in voids and twins of halloysite on a nanometer scale with composition plane (110) were found in the Zhongxiang rectorite pelite, and, in particular, the tapered ends of tubes suggest that halloysite crystallized from solution. Disaggregation of lamellar halloysite particles into parallel clusters of single tubular halloysite crystals suggests that because of significant [H2O] activity in the environment, halloysite may have been derived from the alteration of rectorite.

Copyright

Corresponding author

References

Hide All
Adamo, P., Violante, P. and Wilson, M.J. (2001) Tubular and spheroidal halloysite in pyroclastic deposits in the area of the Roccamonfina vocano (Southern Italy). Geoderma, 99, 295316.
Askenasy, P.E., Dixon, J.B. and McKee, T.R. (1973) Spheroidal halloysite in a Guatemalan soil. Soil Science Society of America Journal, 37, 799803.
Bailey, S.W., Brindley, G.W., Kodama, H. and Martin, R.T. (1982) Report of the Clay Minerals Society Nomenclature Committee 1980–1981: Nomenclature for regular interstratification. Clays and Clay Minerals, 30, 7678.
Bates, T.F., Hildebrand, F.A. and Swineford, A. (1950) Morphology and structure of endellite and halloysite. American Mineralogist, 35, 463484.
Birrell, K.S., Fieldes, M. and Williamson, K.I. (1955) Unusual forms of halloysite. American Mineralogist, 40, 122124.
Burtner, R.I. and Warner, M.A. (1986) Relationship between illite/smectite diagenesis and hydrocarbon generation in Lower Cretaceous Mowry and Skull Creek shales of the northern Rocky Mountain area. Clays and Clay Minerals, 34, 390402.
Chang, H.K., Mackenzie, F.T. and Schoonmaker, J. (1986) Comparisons between the diagenesis of dioctahedral and trioctahedral smectite, Brazilian offshore basins. Clays and Clay Minerals, 34, 407423.
Churchman, G.J. and Gilkes, R.J. (1989) Recognition of intermediates in the possible transformation of halloysite to kaolinite in weathering profile. Clay Minerals, 24, 579590.
Delvaux, B., Tessier, D., Herbillon, A.J., Burtin, G., Jaunet, A.M. and Vielvoye, L. (1992) Morphology, texture and microstructure of halloysite soil clays as related to weathering and exchangeable cation. Clays and Clay Minerals, 40, 446456.
Giese, R.F. Jr. (1988) Kaolin minerals: structures and stabilities. Pp. 2966 in: Hydrous Phyllosilicates (exclusive of micas)(Bailey, S.W., editor). Reviews in Mineralogy, 19. Mineralogical Society of America, Washington, D.C.
Gilkes, R.J., Suddhiprakarn, A. and Armitage, T.M. (1980) Scanning electron microscope morphology of deeply weathered granite. Clays and Clay Minerals, 28, 2934.
Hower, J., Eslinger, E.V., Hower, M.E. and Perry, E.A. (1976) Mechanism of burial metamorphism of argillaceous sediment. 1. Mineralogical and chemi¬cal evidence. Geological Society of America Bulletin, 87, 725737.
Kautz, C.Q. and Ryan, P.C. (2003) The 10 angstrom to 7 angstrom halloysite transition in a tropical soil sequence, Costa Rica. Clays and Clay Minerals, 51, 252263.
Kirkman, J.H. (1977) Possible structure of halloysite disks and cylinders observed in some New Zealand rhyolitic tephras. Clay Minerals, 12, 199216.
Kirkman, J.H. (1981) Morphology and structure of halloysite in New Zealand tephras. Clays and Clay Minerals, 29, 19.
Papoulis, D., Tsolis-Katagas, P. and Katagas, C. (2004) Progressive stages in the formation of kaolin minerals of different morphologies in the weathering of plagioclase. Clays and Clay Minerals, 52, 275286.
Saigusa, M., Shoji, S. and Kato, T. (1978) Origin and nature of halloysite in Andosols from Towada Tephra, Japan. Geoderma, 20, 115129.
Singh, B. and Gilkes, R.J. (1992) An electron optical investigation of the alteration of kaolinite to halloysite. Clays and Clay Minerals, 40, 212229.
Wang, P., Pan, Z.L. and Weng, L.B. (1984) Mineralogy. Geological Publishing House, Beijing, pp. 411414 (in Chinese).
Zhang, R.Y., Wu, F.Q. and Zhang, D.H. (1987) Rectorite in Permian pelitic rocks at Zhongxiang, Hubei province. Acta Mineralogica Sinica, 7, 113120. (in Chinese with English abstract).

Keywords

Characteristics of halloysite associated with rectorite from Hubei, China

  • H.-L. Hong (a1) and J.-X. Mi (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed