Skip to main content Accessibility help

Carlosbarbosaite, ideally (UO2)2Nb2O6(OH)2·2H2O, a new hydrated uranyl niobate mineral with tunnels from Jaguaraçu, Minas Gerais, Brazil: description and crystal structure

  • D. Atencio (a1), A. C. Roberts (a2), M. A. Cooper (a3), L. A. D. Menezes Filho (a4), J. M. V. Coutinho (a1), J. A. R. Stirling (a2), K. E. Venance (a2), N. A. Ball (a3), E. Moffatt (a5), M. L. S. C. Chaves (a4), P. R. G. Brandão (a6) and A. W. Romano (a4)...


Carlosbarbosaite, ideally (UO2)2Nb2O6(OH)2·2H2O, is a new mineral which occurs as a late cavity filling in albite in the Jaguaraçu pegmatite, Jaguaraçu municipality, Minas Gerais, Brazil. The name honours Carlos do Prado Barbosa (1917–2003). Carlosbarbosaite forms long flattened lath-like crystals with a very simple orthorhombic morphology. The crystals are elongated along [001] and flattened on (100); they are up to 120 μm long and 2–5 μm thick. The colour is cream to pale yellow, the streak yellowish white and the lustre vitreous. The mineral is transparent (as individual crystals) to translucent (massive). It is not fluorescent under either long-wave or short-wave ultraviolet radiation. Carlosbarbosaite is biaxial(+) with α = 1.760(5), β = 1.775(5), γ = 1.795(5), 2Vmeas. = 70(1)º, 2Vcalc. = 83º. The orientation is X || a, Y || b, Z || c. Pleochroism is weak, in yellowish green shades, which are most intense in the Z direction. Two samples were analysed. For sample 1, the composition is: UO3 54.52, CaO 2.07, Ce2O3 0.33, Nd2O3 0.49, Nb2O5 14.11, Ta2O5 15.25, TiO2 2.20, SiO2 2.14, Fe2O3 1.08, Al2O3 0.73, H2O (calc.) 11.49, total 104.41 wt.%; the empirical formula is (□0.68Ca0.28Nd0.02Ce0.02)Σ=1.00[U1.440.56O2.88(H2O)1.12](Nb0.80Ta0.52Si0.27Ti0.21Al0.11Fe0.10)Σ=2.01 O4.72(OH)3.20(H2O)2.08. For sample 2, the composition is: UO3 41.83, CaO 2.10, Ce2O3 0.31, Nd2O3 1.12, Nb2 O5 14.64, Ta2O5 16.34, TiO2 0.95, SiO2 3.55, Fe2O3 0.89, Al2O3 0.71, H2O (calc.) 14.99, total 97.43 wt.%; the empirical formula is (□0.67Ca0.27Nd0.05Ce0.01)Σ=1.00[U1.040.96O2.08(H2O)1.92] (Nb0.79Ta0.53Si0.42Ti0.08Al0.10Fe0.08)Σ=2.00O4.00(OH)3.96(H2O)2.04. The ideal endmember formula is (UO2)2Nb2O6(OH)2·2H2O. Calculated densities are 4.713 g cm-3 (sample 1) and 4.172 g cm-3 (sample 2). Infrared spectra show that both (OH) and H2O are present. The strongest eight X-ray powder-diffraction lines [listed as d in Å (I)(hkl)] are: 8.405(8)(110), 7.081(10)(200), 4.201(9)(220), 3.333(6)(202), 3.053(8)(022), 2.931(7)(420), 2.803(6)(222) and 2.589(5)(040,402). The crystal structure was solved using single-crystal X-ray diffraction (R = 0.037) which gave the following data: orthorhombic, Cmcm, a = 14.150(6), b = 10.395(4), c = 7.529(3) Å, V = 1107(1) Å3, Z = 4. The crystal structure contains a single U site with an appreciable deficiency in electron scattering, which is populated by U atoms and vacancies. The U site is surrounded by seven O atoms in a pentagonal bipyramidal arrangement. The Nb site is coordinated by four O atoms and two OH groups in an octahedral arrangement. The half-occupied tunnel Ca site is coordinated by four O atoms and four H2O groups. Octahedrally coordinated Nb polyhedra share edges and corners to form Nb2O6(OH)2 double chains, and edge-sharing pentagonal bipyramidal U polyhedra form UO5 chains. The Nb2O6(OH)2 and UO5 chains share edges to form an open U—Nb—φ framework with tunnels along [001] that contain Ca(H2O)4 clusters. Carlosbarbosaite is closely related to a family of synthetic U–Nb–ϕ framework tunnel structures, it differs in that is has an (OH)-bearing framework and Ca(H2O)4 tunnel occupant. The structure of carlosbarbosaite resembles that of holfertite.


Corresponding author



Hide All
Abd El-Naby, H.H. (2008) Genesis of secondary uranium minerals associated with jasperoid veins, El Rerdiya area, Eastern Desert, Egypt. Mineralium Deposita, 41, 933944.
Arcidiácono, E.C. and Bedlivy, D. (1976) Datos preliminares sobre el hallazgo de un nuevo mineral de uranio, en Tanti (Prov. de Cordoba R. Argentina). Revista de la Asociación Geológica Argentina, 31, 232234.
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R., Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.
Belakovskiy, D.I., Pautov, L.A., Sokolova, E., Hawthorne, F.C. and Mokhov, A.V. (2006) Holfertite, a new hydroxyl-hydrated uranium titanate from Starvation Canyon, Thomas Range, Utah. Mineralogical Record, 37, 311317.
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.
Burns, P.C., Ewing, R.C. and Hawthorne, F.C. (1997) The crystal chemistry of hexavalent uranium: polyhedral geometries, bond-valence parameters, and polymerization of polyhedra. The Canadian Mineralogist, 35, 15511570.
Cassedanne, J.P. and Alves, J.N. (1994) The Jaguaraçu pegmatite, Minas Gerais, Brazil. Mineralogical Record, 25, 165170.
Edge, R.A. and Taylor, H.F. (1971) Crystal structure of thaumasite, [Ca3Si(OH)6·12H2O](SO4)(CO3). Acta Crystallographica, B27, 594601.
Foord, E.E., Gaines, R.V., Crock, J.G., Simmons, W.B., Jr. and Barbosa, C.P. (1986) Minasgeraisite, a new member of the gadolinite group from Minas Gerais, Brazil. American Mineralogist, 71, 603607.
Gasperin, M. (1986) (Cs.75K.25)(Nb,Ti)U2O11: Un niobotitanouranate alcalin de type structural nouveau. Acta Crystallographica, C42, 136138.
Gasperin, M. (1987) Synthese et structure de trois niobouranates d’ions monovalents: TlNb2U2O11.5, KNbUO6, et RbNbUO6. Journal of Solid State Chemistry, 67, 219224.
Mandarino, J.A. (1979) The Gladstone-Dale relationship: part II Some I. general applications. The Canadian Mineralogist, 17, 7176.
Mandarino, J.A. (1981) The Gladstone-Dale relationship: part I The V. ompatibility concept and its application. The Canadian Mineralogist, 19, 441450.
Mandarino, J.A. (1989) The Gladstone-Dale compatibility of some new mineral proposals considered by the Commission on New Minerals and Mineral I.M.A. Names (1983-1987). European Journal of Mineralogy, 1, 123125.
Moore, P.B., Barbosa, C.P. and Gaines, R.V. (1978) Bahianite, Sb3Al5O14(OH)2, a new species. Mineralogical Magazine 42, 179182.
Nomura, S.F., Atencio, D., Chukanov, N.V., Rastsvetaeva, R.K., Coutinho, J.M.V. and Karipidis, T. (2010) Manganoeudialyte, a new mineral from Poços de Caldas, Minas Gerais, Brazil. Zapiski RMO (Proceedings of the Russian Mineralogical Society), 139, 3547.
O’Keeffe, M. and Hyde, B.G. (1981). The role of nonbonded forces in crystals. Pp. 227254. in: Structure and Bonding in Crystals (O, M.’Keeffe and Navrotsky, A., editors). Wiley, New York.
Sheldrick, G.M. (1997) SHELX-97: Program for the solution and refinement of crystal structures. Siemens Energy and Automation, Madison, Wisconsin, USA
Sheldrick, G.M. (1998) SADABS User Guide. University of Göttingen, Göttingen, Germany.
Sokolova, E., Hawthorne, F.C., Belakovskiy, D.I. and Pautov, L.A. (2005) The OD (Order-Disorder) structure of holferti te, [U6+ 1.75Ti4+O(OH)] [(H2O)3(Ca0.25], a new mineral from Searle Canyon, Thomas Range, Utah, USA. The Canadian Mineralogist, 43, 15451552.
Smith, D.G.W. and Nickel, E.H. (2007) A system for codification for unnamed minerals: report of the Subcommittee for Unnamed Minerals of the IMA Commission on New Minerals, Nomenclature and Classification. The Canadian Mineralogist, 45, 9831055.
Surblé, S., Obbade, S., Saad, S., Yagoubi, S., Dion, C. and Abraham, F. (2006) The A(1-x) U Nb O(6-x/2) compounds (x = 0, A = Li, Na, Cs and x = 0.5, A = Rb, Cs): from layered to tunneled structure. Journal of Solid State Chemistry, 179, 32383251.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed