Skip to main content Accessibility help
×
Home

Carbon incorporation in plumbogummite-group minerals

  • I. E. Grey (a1), F. L. Shanks (a2), N. C. Wilson (a1), W. G. Mumme (a1) and W. D. Birch (a3)...

Abstract

Non-stoichiometric, carbon-containing crandallite from Guatemala and plumbogummite from Cumbria have been characterized using electron microprobe (EMPA) and wet-chemical analyses, Rietveld analysis of powder X-ray diffraction (PXRD) patterns, and infrared (IR), Raman and cathodoluminescence (CL) spectroscopies. The samples contain 11.0 and 4.8 wt.% CO2, respectively. The IR spectra for both samples show a doublet in the range 1410–1470 cm–1, corresponding to CO3 vibrations. Direct confirmation of CO3 replacing PO4 was obtained from difference Fourier maps in the Rietveld analysis. Carbonate accounts for 67% of the C in the plumbogummite and 20% of the C in the Guatemalan crandallite, the remainder being present as nano-scale organic carbon. The CO3 substitution for PO4 is manifested in a large contraction of the tetrahedral volume (14–19%) and by a contraction of the a axis, analogous to observations for carbonate-containing fluorapatites. Stoichiometric crandallite from Utah was characterized using the same methods, for comparison with the non-stoichiometric, carbon-bearing phases.

Copyright

Corresponding author

References

Hide All
Baldwin, J.R., Hill, P.G., Von Knorring, O. and Oliver, G.J.H. (2000) Exotic aluminium phosphates, natromontebrasite, brazilianite, goyazite, gorceixite and crandallite from rare-element pegmatites in Namibia. Mineralogical Magazine, 64, 11471164.
Baur, W.H. (1981) Interatomic distance predictions for computer simulation of crystal structures. Pp. 3152 in: Structure and Bonding in Crystals II (O’Keeffe, M. and Navrotsky, A., editors). Academic Press, New York.
Bayliss, P., Kolitsch, U., Nickel, E.H. and Pring, A. (2010) Alunite supergroup: recommended nomenclature. Mineralogical Magazine, 74, 919927.
Blanchard, F.N. (1972) Physical and chemical data for crandallite from Alachua county, Florida. American Mineralogist, 57, 473484.
Blount, A.M. (1974) The crystal structure of crandallite. American Mineralogist, 59, 4147.
Breitinger, D.K., Brehm, G., Mohr, J., Colognesi, D., Parker, S.F., Stolle, A., Pimpl, Th.H. and Schwab, R.G. (2006) Vibrational spectra of synthetic crandallite-type minerals – optical and inelastic neutron scattering spectra. Journal of Raman Spectroscopy, 37, 208216.
Budaeva, A.D., Zoltoev, E.V., Tikhova, V.D. and Bodoev, N.V. (2006) Interaction of heavy metal ions with ammonium humates. Russian Journal of Applied Chemistry, 79, 920923.
Comodi, P. and Liu, Y. (2000) CO3 substitution in apatite: further insight from new crystal-chemical data of Kasekere (Uganda) apatite. European Journal of Mineralogy, 12, 965974.
Cowgill, U.M., Hutchinson, G.E. and Joensuu, O. (1963) An apparently triclinic dimorph of crandallite from a tropical swamp sediment in El Peten, Guatemala. American Mineralogist, 48, 11441153.
Drouet, C., Pass, K.L., Baron, D., Draucker, S. and Navrotsky, A. (2004) Thermochemistry of jarositealunite and natrojarosite-natroalunite solid solutions. Geochimica et Cosmochimica Acta, 60, 21972205.
Dzikowski, T.J., Groat, L.A. and Jambor, J.L. (2006) The symmetry and crystal structure of gorceixite, BaAl3[PO3(O,OH)]2(OH)6, a member of the alunite supergroup. The Canadian Mineralogist, 44, 951958.
Elliott, J.C. (2002) Calcium phosphate biominerals. Pp. 427453 in : Phosphates: Geochemical, Geobiological and Materials Importance (Kohn, M.J. Rakovan, J. and Hughes, J.M, editors). Reviews in Mineralogy, 48, Mineralogical Society of America, Washington, D.C.
Förtsch, E.B. (1967) ‘Plumbogummite’ from Roughten Gill, Cumberland. Mineralogical Magazine, 36, 530538.
Hartley, E.G.J. (1900) On the constitution of the natural arsenates and phosphates. Part III. Plumbogummite and hitchcockite. Mineralogical Magazine, 57, 223234.
Hu, A., Alkhesho, I. And Duley, W.W. (2006) Highresolution spectra of carbon nanoparticles: Laboratory simulation of the infrared emission features associated with polycyclic aromatic hydrocarbons. The Astrophysical Journal, 653, L157–L160.
Huminicki, D.M.C. and Hawthorne, F.C. (2002) The crystal chemistry of the phosphate minerals. Pp. 123–253 in : Phosphates: Geochemical, Geobiological and Materials Importance (Kohn, M.J. Rakovan, J. and Hughes, J.M, editors). Reviews in Mineralogy, 48, Mineralogical Society of America, Washington, D.C.
Ivanova, T.I., Frank-Kamenetskaya, O.V., Kol’tsov, A.B. and Ugolkov, V.L. (2001) Crystal structure of calcium-deficient carbonated hydroxyapatite. Thermal decomposition. Journal of Solid State Chemistry, 160, 340349.
Jambor, J.L. (1999) Nomenclature of the alunite supergroup. The Canadian Mineralogist, 37, 13231341.
Jones, J.B. (1968) Al-O and Si-O tetrahedral distances in aluminosilicate framework structures. Acta Crystallographica, B24, 355.
Kato, T. (1987) Further refinement of the goyazite structure. Mineralogical Magazine, 13, 390396.
Kato, T. (1990) The crystal structure of florencite. Neues Jahrbuch füer Mineralogie Monatshefte, 227–231.
Knudsen, A.C. and Gunter, M.E. (2002) Sedimentary phosphorites – an example: Phosphoria formation, southeastern Idaho, U.S.A. Pp. 363–389 in: Phosphates: Geochemical, Geobiological and Materials Importance (Kohn, M.J. Rakovan, J. and Hughes, J.M, editors). Reviews in Mineralogy, 48, Mineralogical Society of America, Washington, D.C.
Kolitsch, U., Tiekink, E.R.T., Slade, P.G., Taylor, M.R. and Pring, A. (1999) Hinsdalite and plumbogummite, their atomic arrangements and disordered lead sites. European Journal of Mineralogy, 11, 513520.
Lehr, J.R., McClellan, G.H., Smith, J.P. and Frasier, A.W. (1968) Characterization of apatites. in commercial phosphate rocks. Pp. 29–44 in: Coll. Int. Phosphates Minéraux Solides, Toulouse, 1967, Vol. 2, Paris.
McClellan, G.H. (1980) Mineralogy of carbonate fluorapatites. Journal of the Geological Society, London, 137, 675681.
McConnell, D. (1938) A structural investigation of the isomorphism of the apatite group. American Mineralogist, 23, 119.
Mills, S.J., Kampf, A.R., Raudsepp, M. and Christy, A.G. (2009) The crystal structure of Ga-rich plumbogummite from Tsumeb, Namibia. Mineralogical Magazine, 73, 837845.
Perdikatsis, B. (1991) X-ray powder diffraction study of francolite by the Rietveld method. Materials Science Forum, 79-82, 809814.
Pouchou, J.-L. (1993) X-ray microanalysis of stratified specimens. Analytica Chimica Acta, 283, 8197.
Raade, G., Rømming, C. and Medenbach, O. (1998) Carbonate-substituted phosphoellenbergerite from Modum, Norway: description and crystal structure. Mineralogy and Petrology, 62, 89101.
Regnier, P., Lasaga, A.C., Berner, R.A., Han, O.H. and Zilm, K.W. (1994) Mechanism of CO3 2– substitution in carbonate-fluorapatite: Evidence from FTIR spectroscopy, 13C NMR, and quantum mechanical calculations. American Mineralogist, 79, 809818.
Ripmeester, J.A., Ratcliffe, C.I., Dutrizac, J.E. and Jambor, J.L. (1986) Hydronium ion in the alunitejarosite group. The Canadian Mineralogist, 24, 435447.
Rodriguez-Carvajal, J. (1990) FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis. Satellite meeting on powder diffraction of the XV Congress of the IUCr, Toulouse, France.
Shur, J.W., Shin, T.I., Lee, S.M., Baek, S.W. and Yoon, D.H. (2003) Photoluminescence properties of Nd: LiNbO3 co-doped with ZnO fiber single crystals grown by micro-pulling-down method. Materials Science and Engineering, B105, 16–19.
Van Wambeke, L. (1971) The problem of cation deficiencies in some phosphates due to alteration processes. American Mineralogist, 56, 13661384.
Vaughey, J.T., Harrison, W.T.A., Dussack, L.L and Jacobson, A.J. (1994) A new layered vanadium selenium oxide with a structure related to hexagonal tungsten oxide: NH4(VO2)3(SeO3)2 . Inorganic Chemistry, 33, 43704375.
Vieillard, P. and Tardy, Y. (1979) Stability fields of clays and aluminium phosphates: parageneses in lateritic weathering of argillaceous phosphatic sediments. American Mineralogist, 64, 626634.
Wilson, R.M., Elliott, J.C. and Dowker, S.E.P. (1999) Rietveld refinement of the crystallographic structure of human dental enamel apatites. American Mineralogist, 84, 14061414.
Wilson, R.M., Dowker, S.E.P. and Elliott, J.C. (2006) Rietveld refinements and spectroscopic structural studies of a Na-free carbonate apatite made by hydrolysis of monetite. Biomaterials, 27, 46824692.
Wright, K., Freer, R. and Catlow, C.R.A. (1994) The energetics and structure of the hydrogarnet defect in grossular: A computer simulation study. Physics and Chemistry of Minerals, 20, 500503.
Yeomans, J.C. and Bremner, J.M. (1991) Carbon and nitrogen analysis of soils by automated combustion techniques. Communications in Soil Science and Plant Analysis, 22, 843850.
Zemann, J. (1981) Zur stereochemie der carbonate. Fortschritte der Mineralogie, 59, 95116.

Keywords

Carbon incorporation in plumbogummite-group minerals

  • I. E. Grey (a1), F. L. Shanks (a2), N. C. Wilson (a1), W. G. Mumme (a1) and W. D. Birch (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed