Skip to main content Accessibility help
×
Home

Carbon dioxide in pollucite, a feldspathoid with the ideal composition (Cs, Na)16Al16Si32O96·nH2O

  • F. Bellatreccia (a1) (a2), G. Della Ventura (a1) (a2), G. D. Gatta (a3), M. Cestelli Guidi (a2) and S. Harley (a4)...

Abstract

We report a single-crystal Fourier-transform infrared (FTIR) study of a sample of pollucite from Maine, USA. Prior to our work, the sample had been characterized by single-crystal X-ray diffraction, neutron diffraction and electron-probe microanalysis. It is cubic Ia3d, with a crystal-chemical formula Na1.93(Cs10.48Rb0.31K0.04)Σ=10.83(Al14.45Si33.97)Σ=48.42O96·3.92H2O, and an H2O content, determined by thermogravimetric analysis, of 1.6 wt.%. The single-crystal FTIR spectrum has a doublet of intense bands at 3670 and 3589 cm–1, which are assigned to the ν3 and ν1 stretching modes of the H2O molecule, respectively. A very intense and sharp peak at 1620 cm–1 is assigned to the ν2 bending vibration. In the near-infrared region there is a relatively intense peak at 5270 cm–1, which is assigned to a combination (ν2 + ν3) mode of H2O, and a weak but well defined doublet at 7118 and 6831 cm–1, which is assigned to the first overtones of the fundamental stretching modes. A relatively weak but extremely sharp peak at 2348 cm–1 shows that the pollucite contains CO2 molecules in structural cavities. Mapping the sample using FTIR indicates that both H2O and CO2 are homogeneously distributed. Secondary ion mass spectrometry yielded an average CO2 content of 0.09±0.02 wt.%. On the basis of this value, we determined the integrated molar absorption coefficient for the spectroscopic analysis of CO2 in pollucite to be εiCO2 = 11,000±3000 l mol–1 cm–2; the linear molar absorption coefficient for the same integration range is εlCO2 = 1600±500 l mol–1 cm–1.

Copyright

Corresponding author

References

Hide All
Aines, R.D. and Rossman, G.R. (1984) The high temperature behaviour of water and carbon dioxide in cordierite and beryl. American Mineralogist, 69, 319327.
Armbruster, T. and Gunter, M.E. (2001) Crystal Structures of Natural Zeolites. Pp. 157 in: Natural Zeolites: Occurrence, Properties, Applications (Bish, D.L. and Ming, D.W., editors). Reviews in Mineralogy and Geochemistry, 45. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.
Baerlocher, Ch., Meier, W.M. and Olson, D.H. (2001) Atlas of Zeolite Framework Types, fifth edition. Elsevier, Amsterdam, 302 pp.
Balassone, G, Beran, A., Fameli, G, Amalfitano, C. and Petti, C. (2006) The hydrous component in leucite from Somma—Vesuvius and Roccamonfina volcanoes (southern Italy)—a FTIR spectroscopic investigation. Neues Jahrbuch fur Mineralogie Abhandlungen, 182, 149156.
Behrens, H., Tamic, N. and Holtz, F. (2004) Determination of the molar absorption coefficient for the infrared absorption band of CO2 in rhyolitic glasses. American Mineralogist, 89, 301306.
Bellatreccia, F., Della Ventura, G, Piccinini, M., Cavallo, A. and Brilli, M. (2009) H2O and CO2 in minerals of the hauyine—sodalite group: an FTIR spectroscopic study. Mineralogical Magazine, 73, 399423.
Beran, A. and Rossman, R. (1989) The water content of nepheline. Mineralogy and Petrology, 40, 235240.
Blank, J.G, Stolper, E.M. and Carroll, M.R (1993) Solubilities of carbon dioxide and water in rhyolitic melt at 850°C and 750 bars. Earth and Planetary Science Letters, 119, 2736.
Callegari, A.M., Boiocchi, M., Bellatreccia, F., Caprilli, E., Medenbach, O. and Cavallo, A. (2011) Capranicaite, KCaNaAl4B4Si2O18: a new inosilicate from Capranica, Italy, with a peculiar topology of the two-periodic single chain [Si2O6]. Mineralogical Magazine, 75, 3343.
Della Ventura, G, Bellatreccia, F. and Bonaccorsi, E. (2005) CO2 in cancrinite—sodalite group minerals: pitiglianoite. European Journal of Mineralogy, 17, 847851.
Della Ventura, G, Bellatreccia, F., Parodi, G.C., Camara, F. and Piccinini, M. (2007) Single-crystal FTIR and X-ray study of vishnevite, ideally [Na6(SO4)][Na2(H2O)2](Si6Al6O24). American Mineralogist, 92, 713721.
Della Ventura, G, Bellatreccia, F. and Piccinini, M. (2008) Presence and zoning of hydrous components in leucite from the Albani Hills volcano (Rome, Italy). American Mineralogist, 93, 15381544.
Della Ventura, G, Bellatreccia, F., Cesare, B., Harley, S. and Piccinini, M. (2009) FTIR microspectroscopy and SIMS study of water-poor cordierite from El Hoyazo, Spain: application mineral and melt devolatilization. Lithos, 113, 498506.
Della Ventura, G, Bellatreccia, F., Marcelli, A., Cestelli Guidi, M., Piccinini, M., Cavallo, A. and Piochi, M. (2010) FTIR imaging in earth sciences. Analytical and Bioanalytical Chemistry, 397, 20392049.
Fine, G.J. and Stolper, E.M. (1985) The speciation of carbon dioxide in sodium aluminosilicate glasses. Contributions to Mineralogy and Petrology, 91, 105121.
Gatta, G.D., Nestola, F. and Boffa Ballaran, T. (2006) Elastic behavior, phase transition and pressure induced structural evolution of analcime. American Mineralogist, 91, 568578.
Gatta, G.D., Rotiroti, N, Boffa Ballaran, T. and Pavese, A. (2008a) Leucite at high-pressure: elastic behaviour, phase stability and petrological implications. American Mineralogist, 93, 15881596.
Gatta, G.D., Rotiroti, N, Fisch, M., Kadiyski, M. and Armbruster, T. (2008b) Stability at high-pressure, elastic behaviour and pressure-induced structural evolution of CsAlSi5O12, a potential nuclear waste disposal phase. Physics and Chemistry of Minerals, 35, 521533.
Gatta, G.D., Rinaldi, R., McIntyre, G.J., Nenert G, Bellatreccia, F., Guastoni, A. and Della Ventura, G. (2009a) On the crystal structure and crystal chemistry of pollucite, (Cs,Na)16Al16Si32O9(5-;!H2O: a natural microporous material of interest in nuclear technology. American Mineralogist, 94, 15601568.
Gatta, G.D., Rotiroti, N., Boffa Ballaran, T., Sanchez Valle, C. and Pavese, A. (2009b) Elastic behavior and phase-stability of pollucite, a potential host for nuclear waste. American Mineralogist, 94, 11371143.
Goldman, D.S., Rossman, G.R. and Dollase, W.A. (1977) Channel constituents in cordierite. American Mineralogist, 62, 11441157.
Gottardi, G. and Galli, E. (1985) Natural Zeolites. Springer-Verlag, Berlin, Germany, 409 pp.
Harley, S.L. and Carrington, D.P. (2001) The distribution of H2O between cordierite and granitic melt: improved calibration of H2O incorporation in cordierite and its application to high-grade meta-morphism and crustal anatexis. Journal of Petrology, 42, 15951620.
Harley, S.L., Thompson, P., Hensen, B.J. and Buick, I.S. (2002) Cordierite as a sensor of fluid conditions in high-grade metamorphism and crustal anatexis. Journal of Metamorphic Geology, 20, 7186.
Ihinger, P.D., Hervig, R.L. and McMillan, P.F. (1994) Analytical methods for volatiles in glasses. Pp. 67121 in: Volatiles in Magmas (Carroll, M.R. and Holloway, J.R., editors). Reviews in Mineralogy, 30. Mineralogical Society of America, Washington DC.
Johnson, EA. and Rossman, G.R. (2003) The con-centration and speciation of hydrogen in feldspars using FTIR and 1H MAS NMR spectroscopy. American Mineralogist, 88, 901911.
Kobayashi, H., Yanase, I. and Mitamura, T. (1997) A new model for the pollucite thermal expansion mechanism. Journal of the American Ceramic Society, 80, 21612164.
Kobayashi, H., Sumino, S., Tamai, S. and Yanase, I. (2006) Phase transition and lattice thermal expansion of Cs-deficient pollucite, Cs1_xAl1_xSi2+xO6(x40.25), compounds. Journal of the American Ceramic Society, 89, 31573161.
Kolesov, BA. and Geiger, C.A. (2000) Cordierite II: the role of CO2 and H2O. American Mineralogist, 85, 12651274.
Kolesov, BA. and Geiger, C.A. (2003). Molecules in the SiO2-clathrate melanophlogite: a single-crystal Raman study. American Mineralogist, 88, 13641368.
Khomenko, V.M. and Langer, K (2005) Carbon oxides in cordierite channels: determination of CO2 isotopic species and CO by single crystal IR spectroscopy. American Mineralogist, 90, 19131917.
Libowitzky, E. and Rossman, G.R. (1996). Principles of quantitative absorbance measurements in anisotropic crystals. Physics and Chemistry of Minerals, 23, 319327.
Libowitzky, E. and Rossman, G.R. (1997). An IR absorption calibration for water in minerals. American Mineralogist, 82, 11111115.
Mandeville, C.W., Webster, J.D., Rutherford, M.J., Taylor, B.E., Timbal, A. and Faure, K (2002) Determination of molar absorptivities for infrared absorption bands of H2O in andesitic glasses. American Mineralogist, 87, 813821.
Morizet, Y., Brooker, RA. and Kohn, S.C. (2002) CO2in haplo-phonolite melt: solubility, speciation and carbonate complexation. Geochimica et Cosmochimica Acta, 66, 18091820.
Paterson, M.S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bulletin de Mineralogie, 105, 2022.
Stolper, E.M. (1982) Water in silicate glasses: an infrared spectroscopic study. Contributions to Mineralogy and Petrology, 81, 117.
Thompson, P., Harley, S.L. and Carrington, D.P. (2001) The distribution of H2O-CO2 between cordierite and granitic melt under fluid-saturated conditions at 5 kbar and 900°C. Contributions to Mineralogy and Petrology, 142, 107118.
Wood, D.L. and Nassau, K (1967) Infrared spectra of foreign molecules in beryl. Journal of Chemical Physics, 47, 22202228.
Wood, D.L. and Nassau, K (1968) The characterization of beryl and emerald by visible and infrared absorption spectroscopy. American Mineralogist, 53, 777800.
Yanase, I., Kobayashi, H, Shibasaki, Y. and Mitamura, T. (1997) Tetragonal—cubic structural phase transition in pollucite by low-temperature X-ray powder diffraction. Journal of the American Ceramic Society, 80, 26932695.
Zhang, M., Wang, L., Hirai, S., Redfern, S.A.T. and Salje, E.K.D. (2005) Dehydroxylation and CO2incorporation in annealed mica (sericite): an infrared spectroscopic study. American Mineralogist, 90, 173180.

Keywords

Carbon dioxide in pollucite, a feldspathoid with the ideal composition (Cs, Na)16Al16Si32O96·nH2O

  • F. Bellatreccia (a1) (a2), G. Della Ventura (a1) (a2), G. D. Gatta (a3), M. Cestelli Guidi (a2) and S. Harley (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed