Skip to main content Accessibility help
×
Home

Bond topology and structure-generating functions: graph-theoretic prediction of chemical composition and structure in polysomatic T–O–T (biopyribole) and H–O–H structures

  • F. C. Hawthorne (a1)

Abstract

Aspects of the bond topology and chemical composition of a mineral may be incorporated into a general formula by writing the local topological details of each cation and anion, along with their chemical identity, as a general expression called a structure-generating function. Here, this procedure is described for polysomatic T–O–T and H–O–H structures. We may write tetrahedrally coordinated cations and their associated anions as {T2nΘm}. For {T2nΘm} to be a chain or ribbon, 5n < m ≤ 6n, and we may write m as 5n + N, where N is an integer. Within the {T2nΘ(5n+N)} unit, we may recognize three types of anion vertices: (1) bridging anions, Θbr, that are bonded to two T cations; (2) apical anions, Θap, that are involved in linkage to other cations out of the plane of the bridging anions; and (3) linking anions, Θl, that link to non-T cations in the plane of the bridging anions. We may incorporate the connectivity of the cations in our algebraic representation of the chain as follows: {T2nΘbr aΘap bΘl c} where a + b + c = 5n + N. The apical anions of the T- or H-sheets provide some anions of the layer of octahedra. We may use the handshaking di-lemma of graph theory to examine the interaction between the two types of layers, and write a Structure-Generating Function, S(N;n), that gives both the stoichiometry and aspects of the bond topology of the structures.

Where N = 1, the T-sheet consists of ribbons of the form {T2nΘ(5n+1)} = {T2nΘbr (3n–1)Θap 2nΘl 2}. Each T–Θbr–T linkage spans an octahedron, and hence there are (3n – 1) octahedrally coordinated cations between opposing {T2nΘbr (3n–1)Θap 2nΘl 2} ribbons. There are an additional (n–1) vertices, Ψ, required to complete the coordination of the M cations on one side of the O-sheet, and we may write the structure-generating function for biopyriboles as follows: S(1;n) = Xi[M(3n–1)Ψ2(n–1){T2nΘbr (3n–1)Θap 2nΘl 2}2] = [M(3n–1)Ψ2(n–1){T2nΘ(5n+1)}2]. Where N = 2, the general form of the T-ribbon is {T2nΘ(5n+2)}, a component of the H-sheet in the polysomatic H–O–H minerals in which the T-ribbons are linked laterally by [5]- or [6]-coordinated high-valence cations, D, which have the coordination (Dφ4 1φapφt), where ft may or may not be present depending on the coordination number, [6] or [5], of the D cation. The general formula for an H-sheet is [Dφap{T2nΘbr (3n–2)Θap 2nΘl 4t 0–1], where φt (written after the T-sheet) occurs on the outside of the H-sheet and may be involved in linkage between adjacent H–O–H blocks. The H-sheet links via its apical anions to the O-sheet, giving the general formula of an H–O–H block as [M(3n+1)(DφapΨn{T2nΘ(5n+2)t 0–1)2]. These H–O–H blocks may link directly or indirectly through the φt anions of the (DΘl 4φapφt) octahedra, giving S(2;n) = Xi[M(3n+1)Ψ2n(D2φap 2{T2nΘbr (3n–2)Θap 2nΘl 4}2t 0–2]. Combining the expressions for the structure-generating functions gives a single function for T–O–T and H–O–H structures:

S(N;n) = Xi[M(3n+2N–3)?2(n+N–2)(D2(N–1)f2 ap (N–1){T2nT(3n–N) brT2n apT2N 1}2)f0–2(N–1) t]

This expression also generates mixed-ribbon polysomatic structures. Thus S(1;2+3) gives the chemical composition and structure of the mixed-chain pyribole chesterite, and S(2;1+4) gives the chemical composition and structure of the mixed-chain H–O–H mineral, veblenite.

Copyright

Corresponding author

References

Hide All
Belov, N.V. (1963) Crystal Chemistry of Silicates with Large Cations. Akademia Nauk SSSR, Moscow.
Belov, N.V. (1976) Essays on Structural Mineralogy. Nedra, Moscow, [in Russian].
Bragg, W.L. (1930) The structure of silicates. Zeitschrift für Kristallographie, 74, 237305.
Brown, I.D. (2002) The Chemical Bond in Inorganic Chemistry. The Bond Valence Model. Oxford University Press, Oxford, UK.
Cámara, F., Sokolova, E., Abdu, Y. and Hawthorne, F.C. (2010) The crystal structures of niobophyllite, kupletskite-(Cs) and Sn-rich astrophyllite: revisions to the crystal chemistry of the astrophyllite-group minerals. The Canadian Mineralogist, 48, 116.
Cámara, F., Sokolova, E., Hawthorne, F.C., Rowe, R., Grice, J.D. and Tait, K.T. (2011) Veblenite, IMA 20102050.
CNMNC Newsletter No. 7, February 2011, page 29; Mineralogical Magazine, 75, 2731.
Chisholm, J.E. (1973) Planar defects in fibrous amphiboles. Journal of Materials Science, 8, 475483.
Chisholm, J.E. (1981) Pyribole structure types. Mineralogical Magazine, 44, 205216.
Christianssen, C.C., Johnsen, O. and Makovicky, E. (2003) Crystal chemistry of the rosenbuschite group. The Canadian Mineralogist, 41, 12031224.
Drits, V.A., Goncharov, Y.I., Aleksandrova, V.A., Khadzhi, V.E. and Dmitrik, A.L. (1974) New type of strip silicate. Soviet Physics Crystallography, 19, 737741.
Egorov-Tismenko, Yu.K. and Sokolova, E.V. (1987) Comparative crystal chemistry of a group of titanium silicate analogues of mica. Pp. 96106 in: Comparative Crystal Chemistry. Moscow State University, Moscow, [in Russian].
Ferraris, G. (1997) Polysomatism as a tool for correlating properties and structure. Pp. 275295 in: Modular Aspects of Minerals (S. Merlino, editor). European Mineralogical Union Notes in Mineralogy, 1. Eötvö s University Press, Budapest. Hungary.
Ferraris, G. and Gula, A. (2005) Polysomatic aspects of microporous minerals - heterophyllosilicates, polysepides and rhodesite-related structures. Pp. 69–104 in: Micro- and Mesoporous Mineral Phases (G. Ferraris and S. Merlino, editors). Reviews in Mineralogy and Geochemistry, 57. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.
Ferraris, G., Ivaldi, G., Khomyakov, A.P., Sobolova, S.V., Belluso, E. and Pavese, A. (1996) Nafertisite, a layer titanosilicate member of a polysomatic series including mica. European Journal of Mineralogy, 8, 241249.
Goldschmidt, V.M. (1926) Laws of crystal chemistry. Naturwissenschaften, 14, 477485.
Goldschmidt, V.M. (1927) Construction of crystals. Zeitschrift für Technische Physik, 8, 251264.
Hawthorne, F.C. (1981) Crystal chemistry of the amphiboles. Pp. 1102 in: Amphiboles and Other Hydrous Pyriboles: Mineralogy (D.R. Veblen, editor). Reviews in Mineralogy 9A. Mineralogical Society of America, Washington DC.
Hawthorne, F.C. (1983) The crystal chemistry of the amphiboles. The Canadian Mineralogist, 21, 173480.
Hawthorne, F.C. (1985) Towards a structural classification of minerals: the VIMIVT2jn minerals. American Mineralogist, 70, 455473.
Hawthorne, F.C. (1990) Structural hierarchy in [6]M[4] Tjn minerals. Zeitschrift für Kristallographie, 192, 152.
Hawthorne, F.C. (1994) Structural aspects of oxide and oxysalt crystals. Acta Crystallographica, B50, 481510.
Hawthorne, F.C. (1997) Structural aspects of oxide and oxysalt minerals. Pp. 373429 in: Modular Aspects of Minerals (S. Merlino, editor). European Mineralogical Union Notes in Mineralogy 1. Eötvö s University Press, Budapest, Hungary.
Hawthorne, F.C. and Oberti, R. (2007) Amphiboles: Crystal chemistry. Pp. 154 in: Amphiboles: Crystal Chemistry, Occurrence and Health Issues (F.C. Hawthorne, R. Oberti, G. Della Ventura and A. Mottana, editors) Reviews in Mineralogy and Geochemistry 67. Mineralogical Society of America, Washington DC and the Geochemical Society, St Louis, Missouri, USA.
Krivovichev, S.V., Armbruster, T., Yakovenchuk, V.N., Pakhomovsky, Ya.A. and Men’shikov, Yu.P. (2003) Crystal structures of lamprophyllite-2M and lamprophyllite- 2O from the Lovozero alkaline massif, Kola peninsula, Russia. European Journal of Mineralogy, 15, 711718.
Landé, A. (1920) The size of atoms. Zeitschrift für Technische Physik, 2, 8789.
Law, A.D. and Whittaker, E.J.W. (1980) Rotated and extended model structures in amphiboles and pyroxenes. Mineralogical Magazine, 43, 565574.
Lewis, G.N. (1923) Valence and the Structure of Atoms and Molecules. American Chemical Society, Monograph Series, New York.
Lima-de-Faria, J., Hellner, E., Liebau, F., Makovicky, E. and Parthé, E. (1990) Nomenclature of inorganic structure types. Report of the International Union of Crystallography Commission on Crystallographic Nomenclature: subcommittee on the nomenclature of inorganic structure types. Acta Crystallographica, A46, 111.
Makovicky, E. (1997) Modularity - different type and approaches. Pp. 315343 in: Modular Aspects of Minerals (S. Merlino, editor). European Mineralogical Union Notes in Mineralogy, 1. Eötvö s University Press, Budapest, Hungary.
Pauling, L. (1929) The principles determining the structures of complex ionic crystals. Journal of the American Chemical Society, 51, 10101026.
Pautov, L.A., Agakhanov, A.A. and Bekenova, G.K. (2006) Sokolovaite CsLi2AlSi4O10F2 - a new mineral species of the mica group. New Data on Minerals, 41, 513.
Petersen, O.V., Johnsen, O., Christiansen, C.C., Robinson, G.W. and Niedermayr, G. (1999) Nafertisite - Na3Fe10Ti2(O,OH,F)43 - from the Nanna pegmatite, Narsaarsuup Qaava, south Greenland. Neues Jahrbuch für Mineralogie, Monatshefte, 1999, 303310.
Piilonen, P.C., McDonald, A.M. and Lalonde, A.E. (2003) Insights into astrophyllite-group minerals. II. Crystal chemistry. The Canadian Mineralogist, 41, 2754.
Pyatenko, Yu.A., Voronkov, A.A. and Pudovkina, Z.V. (1976): Mineralogical Crystal Chemistry of Titanium. Nauka, Moscow, [in Russian].
Shannon, R.D. (1976) Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica, A32, 751767.
Sokolova, E.V. (1998) Polysomatic series seidozeri t e-n acaphite. Zap i s k i Vs esoyuzno go Mineralogicheskogo Obshchestva, 127, 111114.[in Russian].
Sokolova, E. (2006) From structure topology to chemical composition. I. Structural hierarchy and stereochemistry in titanium disilicate minerals. The Canadian Mineralogist, 44, 12731330.
Sokolova, E. (2010) Predictive crystal-chemical relations in Ti-silicates based on the TS block. Geology of Ore Deposits, 52, 410427.
Sokolova, E. and Cámara, F. (2008) Re-investigation of the crystal structure of magnesium astrophyllite. European Journal of Mineralogy, 20, 253260.
Sokolova, E. and Hawthorne, F.C. (2004) The crystal chemistry of epistolite. The Canadian Mineralogist, 42, 797806.
Sokolova, E. and Hawthorne, F.C. (2008) From structure topology to chemical composition. V. Titanium silicates: the crystal chemistry of nacareniobsite- (Ce). The Canadian Mineralogist, 46, 13331342.
Sokolova, E., Cámara, F., Hawthorne, F.C. and Abdu, Y. (2009) From structure topology to chemical composition. VII. Titanium silicates: the crystal structure and crystal chemistry of jinshajiangite. European Journal of Mineralogy, 21, 871883.
Thomson, J.B. Jr (1978) Biopyriboles and polysomatic series. American Mineralogist, 63, 239249.
Veblen, D.R. (1991) Polysomatism and polysomatic series: a review and applications. American Mineralogist, 76, 801826.
Veblen, D.R. and Burnham, C.W. (1978) New biopyriboles from Chester, Vermont: II. The crystal chemistry of jimthompsonite, clinojimthompsonite, and chesterite, and the amphibole-mica reaction. American Mineralogist, 63, 10531073.
Wadsley, A.D. (1957) Crystal chemistry of nonstoichiometric pentavalent vanadium oxides: crystal structure of Li1+xV3O8. Acta Crystallographica, 10, 239249.
Warren, B.E. (1929) The structure of tremolite H2Ca2Mg5(SiO3 ) 8. Neues Jahrbuch fü r Mineralogie, Monatshefte, 72, 4257.
Wasastjerna, J.A. (1923) On the radii of ions. Societas Scientiarum Fennica. Commentationes Physico- Mathematicae, 38, 125.
Wilson, R. (1979) Introduction to Graph Theory. Longman, London.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed