Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T12:43:15.374Z Has data issue: false hasContentIssue false

Barysilite from Garpenberg Norra, Dalarna, Sweden: occurrence and crystal structure refinement

Published online by Cambridge University Press:  05 July 2018

U. Kolitsch*
Affiliation:
Institut für Mineralogie und Kristallographie, Universität Wien, Geozentrum, Althanstr. 14, A-1090 Wien, Austria
D. Holtstam
Affiliation:
Department of Mineralogy, Research Division, Swedish Museum of Natural History, Box 50007, SE-104 05 Stockholm, Sweden

Abstract

A new occurrence of barysilite, Pb8Mn(Si2O7)3, at the polymetallic Garpenberg Norra Zn-Pb deposit, Hedemora, Dalarna, Sweden, is described. The mineral, which forms colourless, transparent grains, is characterized by X-ray diffraction and electron-microprobe analyses. The assemblage includes tephroite, zincian jacobsite, manganoan diopside and others. The crystal structure of a barysilite crystal from Garpenberg Norra was redetermined using single-crystal X-ray diffraction data (Mo-Kα, CCD area detector) and has been refined in space group Rc with a = 9.804(1), c = 38.416(8)Å, V = 3197.8(8)Å3, to R1 = 2.32% for 1025 ‘observed’ reflections with Fo >4σ(Fo). A previous, low-precision structure determination (Lajzérowicz, 1965; R = 20%) is confirmed but improved considerably. The structure contains one distorted MnO6 polyhedron with six equivalent Mn–O bonds (2.224 Å), one Si2O7 disilicate unit with an Si–O–Si angle of 120.9°, and two non-equivalent Pb sites. The Pb1 site has a highly irregular, one-sided coordination with six O ligands, indicating a stereoactive 6s2 lone-electron pair on the Pb2+ ion, whereas the [6+3]-coordinated Pb2 site is fairly regular, with Pb–O distances of 2.540 (3×), 2.674 (3×) and 3.098 (3×) Å. The Pb2 site contains ~10% of Ca (+Ba) replacing Pb, corresponding to the structural formula Pb16(Pb,Ca)22Mn(Si2O7)3. This is the first direct proof that not only the M site in barysilite-type Pb8M(Si2O7)3 compounds can be replaced by divalent cations.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, R.A., Lundström, I., Ripa, M., Simeonov, A. and Christofferson, H. (1996) Facies analysis of a 1.9 Ga continental margin, back-arc felsic caldera province with diverse Zn-Pb-Ag-(Cu-Au) sulfide and Fe oxide deposits, Bergslagen region, Sweden. Economic Geology, 91, 9791008.CrossRefGoogle Scholar
Billhardt, H.W. (1969) Synthesis of lead pyrosilicate and other barysilite- like compounds. American Mineralogist, 54, 510521.Google Scholar
Bordeaux, D. and Lajzérowicz, J. (1969) Synthése de la barysilite Pb3Si2O7 . Bulletin de la Societé Française de Minéralogie et Cristallographie, 92, 383385 (in French).CrossRefGoogle Scholar
Brese, N.E. and O’Keeffe, M. (1991) Bond-valence parameters for solids. Acta Crystallographica, B47, 192197.CrossRefGoogle Scholar
Chen, S., Zhao, B., Jak, E. and Hayes, P.C. (2001) Experimental study of phase equilibria in the PbO-MgO-SiO2 system. Metallurgical and Materials Transactions, 32B, 1116.CrossRefGoogle Scholar
Dunn, P.J. (1985) The lead silicates from Franklin, New Jersey: occurrence and composition. Mineralogical Magazine, 49, 721727.CrossRefGoogle Scholar
Firsov, A.V., Bush, A.A. and Venevtsev, Yu.N. (1984) Growth and study of MPb8(Ge2O7)3 (M = Ba, Cd, Zn) with the barysilite structure. Izvestiya Akademii Nauk SSSR, Neorgani chestie Materialy, 20, 115119 (in Russian).Google Scholar
Glasser, F.P. (1964) New data on barysilite. American Mineralogist, 49, 14851488.Google Scholar
Grensman, F., Kalinowski, M.P. and Sandström, F. (2001) Garpenberg Norra. Litofilen, 18, 2646 (in Swedish).Google Scholar
Harnik, A.B. (1972) Structural chemistry of barysilitetype compounds XY2(Pb2Si2O7)3 . American Mineralogist, 57, 277281.Google Scholar
Holtstam, D., Gatedal, K., Söderberg, K. and Norrestam, R. (2001) Rinmanite, Zn2Sb2Mg2Fe4O14(OH)2, a new mineral species with a nolanite-type structure from the Garpenberg Norra mine, Dalarna, Sweden. The Canadian Mineralogist, 39, 16751683.CrossRefGoogle Scholar
Ito, J. and Frondel, C. (1967) Syntheses of lead silicates: larsenite, barysilite, and related phases. American Mineralogist, 52, 10771084.Google Scholar
Jonsson, E. and Broman, C. (1998) Fluid inclusion studies of hydrated Mn arsenates and associated minerals from the Långban mine, Sweden. Abstracts & Programme, IMA 17th General Meeting, Toronto, Ontario, Canada, August 10-14, A32.Google Scholar
Kalinowski, M.P. (1996) Rambergite, a new polymorph of MnS with hexagonal structure. GFF, 118, A53A54.Google Scholar
Krivovichev, S.V. and Brown, I.D. (2001) Are the compressive effects of encapsulation an artifact of the bond valence parameters? Zeitschrift für Kristallographie, 216, 245247.Google Scholar
Krivovichev, S.V. and Filatov, S.K. (1999 a) Metal arrays in structural units based on anion-centered metal tetrahedra. Acta Crystallographica, B 55, 664676.CrossRefGoogle ScholarPubMed
Krivovichev, S.V. and Filatov, S.K. (1999 b) Structural principles for minerals and inorganic compounds containing anion-centered tetrahedra. American Mineralogist, 84, 10991106.CrossRefGoogle Scholar
Krivovichev, S.V., Filatov, S.K. and Semenova, T.F. (1998) Types of cationic complexes based on oxocentred tetrahedra [OM4] in the crystal structures of inorganic compounds. Russian Chemical Reviews, 67, 137155.CrossRefGoogle Scholar
Lajzérowicz, J. (1965) Étude par diffraction des rayons X et absorption infra- rouge de la barysilite, MnPb8.3Si2O7, et de composès isomorphes. Acta Crystallographica, 20, 357363.CrossRefGoogle Scholar
Michoulier, J. (1967) E.P.R. spectrum of the manganese(II) ion in pyrosilicates and pyrogermanates which are barysilite isomorphs. Proc. Colloq. AMPERE, 14, 287294 (in French). [not seen; abstract from Chemical Abstracts]Google Scholar
Nysten, P., Holtstam, D. and Jonsson, E. (1999) The Långban minerals. Pp. 89183 in: Långban – The Mines, their Minerals, Geology and Explorers (Holtstam, D. and Langhof, J., editors). Swedish Museum of Natural History and Raster Förlag, Stockholm & Chr. Weise Verlag, Munich, Germany.Google Scholar
Otto, H.H. (1983) Crystal data for rhombohedral lead germanate (Pb3[Ge2O7]) isotypic with Pb-barysilite. Journal of Applied Crystallography, 16, 430.CrossRefGoogle Scholar
Otwinowski, Z. and Minor, W. (1997) Processing of X-ray diffraction data collected in oscillation mode. Pp. 307326 in: Methods in Enzymology, Volume 276: Macromolecular Crystallography A (Carter, C.W. Jr., and Sweet, R.M., editors), Academic Press, London.Google Scholar
Petter, W. and Harnik, A.B. (1971) Der Strukturtyp des Barysilit, XY2(Pb2Si2O7)3 . Fortschritte der Mineralogie, 49, 3940 (in German).Google Scholar
Petter, W., Harnik, A.B. and Keppler, U. (1971) Die Kristal lstruktur von Blei-Barysilit, Pb2Si2O7 . Zeitschrift für Kristallographie, 133, 445458 (in German).CrossRefGoogle Scholar
Salnikow, V., Banik, G., Ettmayer, P. and Lux, B. (1979) Die Substituierbarkeit von Blei in Pb3Ge2O7 durch Cd, Sr und Ba. Monatshefte für Chemie, 110, 755758 (in German).CrossRefGoogle Scholar
Sandecki, J. (1983) A textural study of pyrite, sphalerite and galena from Garpenberg Norra, south central Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 105, 213222.CrossRefGoogle Scholar
Schellhorn, M. (1987) Barysilit Pb8Mn[Si2O7]3 – ein weiterer Neufund aus dem Haldenmaterial der ehemaligen Grube Glücksrad / Oberschulenberg. Aufschluss, 38, 339340 (in German).Google Scholar
Schmidt, U., Breuer, K.H. and Eysel, W. (1982) Kristallchemie der Barysili te. Zeitschrift für Kristallographie, 159, 111113 (in German).Google Scholar
Schmidt, U., Breuer, K.H. and Eysel, W. (1983) Crystal chemistry of barysilite-type compounds. Neues Jahrbuch für Mineralogie, Monatshefte, 227235.Google Scholar
Shannon, E.V. and Berman, H. (1926) Barysilite from Franklin Furnace, New Jersey. American Mineralogist, 11, 130132.Google Scholar
Shape Software (1999) ATOMS for Windows and Macintosh V5.0.4. Kingsport, TN 37663, USA.Google Scholar
Sheldrick, G.M. (1997 a) SHELXS-97, a program for the solution of crystal structures. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (1997 b) SHELXL-97, a program for crystal structure refinement. University of Göttingen, Germany.Google Scholar
Sjögren, A. and Lundström, C.H. (1888) Om barysilit, ett förr ej uppmärksammat mineral från Harstigen. Öfversigt af Kungl. Vetenskapsakademiens Handlingar, 45, 710 (in Swedish).Google Scholar
Vivallo, W. (1984) The metamorphism of the supracrustal rocks at Garpenberg, south central Sweden. Geologiska Föreningens i Stockholm Förhandlingar, 106, 257267.CrossRefGoogle Scholar
Wittern, A. (1994) Sekundärmineralien durch Feuersetzen in Oberschulenberg, Bönkhausen, Bleialf und Badenweiler. Aufschluss, 45, 3642 (in German).Google Scholar
Yeates, H. (1991) The lead silicate minerals of Franklin, New Jersey: An SEM survey. Mineralogical Record, 22, 273278.Google Scholar