Skip to main content Accessibility help

An application of the Rietveld refinement method to the mineralogy of a bauxite-bearing regolith in the Lower Amazon

  • Leonardo Boiadeiro Ayres Negrão (a1), Marcondes Lima da Costa (a1), Herbert Pöllmann (a2) and Axel Horn (a2)


A comparison of Rietveld refinement results for a bauxite-bearing regolith and its clayey cover in the Amazon region was made with stoichiometric calculations from chemical analysis and partly from thermogravimetric results. For this investigation a profile in the bauxite-bearing regolith occurrence in the ALCOA bauxite mine at Juruti, Brazil was studied. The different minerals, their compositions and their low crystallinity in the different horizons were investigated and the contents determined. It is evident that some minerals show several generations and some chemical composition changes that must be included in the Rietveld refinement. Al-rich hematites and goethites are common along the bauxite profile. Amorphous contents were determined with rutile added as an internal standard and shown to have gibbsite- or kaolinite-like composition. The minerals could be quantified in the different horizons and the difficulties were mainly related to variable crystalline aspects of the phases. Rietveld refinement can be a powerful tool in bauxite prospecting, quality control and during mining and beneficiation of ore minerals using the adapted refinement strategies.


Corresponding author


Hide All

Associate Editor: Karen Hudson-Edwards



Hide All
Amigó, J.M., Batista, J., Sans, A., Signes, M. and Serrano, J. (1994) Crystallinity of Lower Cretaceous kaolinites of Teruel (Spain). Applied Clay Science, 9, 5169.
Aparicio, P. and Galán, E. (1999) Mineralogical interference on crystallinity index measurements. Clays and Clay Minerals, 47, 1227.
Bárdossy, G. and Aleva, G.J.J. (1990) Lateritic Bauxites. Developments in Economic Geology. Elsevier, Amsterdam, 624 pp.
Bray, E.L. (2016) Bauxite and Alumina. Mineral commodity summaries 2016, U.S. Geological Survey, Reston, Virginia, USA.
Brindley, G.W. and Choe, J.O. (1961) The reaction series, gibbsite → chi alumina → kappa alumina → corundum. American Mineralogist, 46, 771785.
Cao, S., Kang, F., Yang, X., Zhen, Z., Liu, H., Chen, R. and Wei, Y. (2015) Influence of Al substitution on magnetism and adsorption properties of hematite. Journal of Solid State Chemistry, 228, 8289.
Colombo, C. and Violante, A. (1996) Effect of time and temperature on the chemical composition and crystallization of mixed iron and aluminum species. Clays and Clay Minerals, 44(1), 113120.
Costa, M.L., Silva Cruz, G., Faria, H.F.A. and Pöllmann, H. (2014) On the geology, mineralogy and geochemistry of the bauxite-bearing regolith in the lower Amazon basin: Evidence of genetic relationships. Journal of Geochemistry Exploration, 146, 5874.
Cruz, G.S. (2011) Bauxita, horizonte nodular e cobertura argilosa da região de Paragominas e Juruti, estado do Pará. Dissertation, Universidade Federal do Pará, Brazil, 93 pp.
Fazey, P.G., O'Connor, B.H. and Hammond, L.C. (1991) X-ray powder diffraction characterization of synthetic aluminum substituted goethite. Clays and Clay Minerals, 39, 248253.
Feret, F.R. (2013) Selected applications of X-ray diffraction quantitative analysis for raw materials of the aluminum industry. Powder Diffraction, 8, 112123.
Fitzpatrick, R.W. and Schwertmann, U. (1982) Al-substituted goethite – an indicator of pedogenic and other weathering environments in South Africa. Geoderma, 27, 335347.
Hinckley, D.N. (1963) Variability in “crystallinity” values among the kaolin deposits of the coastal plain of Georgia and South Carolina. Clays and Clay Minerals, 11, 229235.
Horn, M., Schwerdtfeger, C.F. and Meagher, E.P. (1972) Refinement of the structure of anatase at several temperatures. Zeitschrift für Kristallographie, 136, 273–81.
Howard, C.J., Sabine, T.M. and Dickson, F. (1991) Structural and thermal parameters for rutile and anatase. Acta Crystallographica, 47, 462468.
Hughes, J.C. and Brown, G. (1979) A crystallinity index for soil kaolins and its relation to parent rock, climate and soil nature. Journal of Soil Scince, 30, 557563.
König, U., Angélica, R.S., Norberg, N. and Gobbo, L. (2012) Rapid X-ray diffraction (XRD) for grade control of bauxites. ICSOBA Proceedings, 19, 11pp.
Kotschoubey, B., Calaf, J.M.C, Lobato, A.C.C., Leite, A.S. and Azevedo, C.H.D. (2005) Caracterização e gênese dos depósitos de bauxita da Província Bauxitífera da Região de Paragominas, noroeste da Bacia do Grajaú, nordeste do Pará/oeste do Maranhão. Pp. 687782 in: Caracterização de Depósitos Minerais em Distritos Mineiros da Amazônia (Marini, , editors). DNPM – CT/Mineral – ADIMB, Brasília.
Li, D., O'Connor, B.H., Low, I.M., van Riessen, A. and Toby, B.H. (2006) Mineralogy of Al-substituted goethites. Powder Diffraction, 21, 289299.
Liètard, O. (1977) Contribution à l’étude des Propiétés Phisicochimiques, Cristallographiques et Morphologiques des Kaolins. PhD thesis, Nancy, France. 345 p.
Lucas, Y. (1997) The bauxite of Juruti. Pp 107133 in: Brazilian Bauxites (A. Carvalho, , editor). USP/FAPESP/ORSTOM, São Paulo, Brazil.
Mendes, A.C., Truckenbrodt, W. and Nogueira, A.C. (2012) Análise faciológica da Formação Alter do Chão (Cretáceo, Bacia do Amazonas), próximo à cidade de Óbidos, Pará, Brasil. Revista Brasileira de geociências, 42, 3957.
Mercury, J.M., Pena, P., De Aza, A. H., Sheptyakov, D. and Turrillas, X. (2006) On the decomposition of synthetic gibbsite studied by neutron thermodiffractometry. Journal of the American Ceramic Society, 89, 37283733.
Mestdagh, M.M., Vielvoye, L. and Herbillon, A.J. (1980) Iron in kaolinite: II. The relationship between kaolinite crystallinity and iron content. Clay Minerals, 15, 112.
Neumann, R., Avelar, A.N. and Costa, G.M. (2014) Refinement of the isomorphic substitutions in goethite and hematite by the Rietveld method, and relevance to bauxite characterization and processing. Minerals Engineering, 55, 8086.
Norby, P. (1997) Synchrotron powder diffraction using imaging plates: crystal structure determination and Rietveld refinement. Journal of Applied Crystallography, 30, 2130.
Norrish, K. and Taylor, R.M. (1961) The isomorphous replacement of iron by aluminum in soil goethites. Journal of Soil Science, 12, 294306.
Oliveira, S.B., Costa, M.L. and Prazeres Filho, H. (2016) The lateritic bauxite deposit of Rondon do Pará: A new giant deposit in the Amazon region, Northern Brazil. Economic Geology, 111, 12771290.
Paz, S.P.A., Angélica, R.S. and Scheller, T. (2012) X-ray diffraction studies of kaolinites to support mineralogical quantification of high silica bauxites from the Brazilian Amazon region. ICSOBA Proceedings, 19, 17.
Plançon, A. and Zacharie, C. (1990) An expert system for the structural characterization of kaolinites. Clay Minerals, 25, 249260.
Pinney, N. and Morgan, D. (2013) Ab initio study of structurally bound water at cation vacancy sites in Fe- and Al-oxyhydroxide materials. Geochimica et Cosmochimica Acta, 114, 94111.
Range, K.J. and Weiss, A. (1969) Über das Verhalten von Kaoliniti bei hohen Drücken. Berichte der Deutschen Keramischen Gesellschaft, 46, 231288.
Rietveld, H.M. (1969) A profile refinement method for nuclear and magnetic structures. Journal of Applied Crystallography, 2, 6571.
Saalfeld, H. and Wedde, M. (1974) Refinement of the crystal structure of gibbsite, Al(OH)3. Zeitschrift für Kristallographie, 139, 129135.
Sadykov, V.A., Isupova, L.A., Tsybulya, S.V., Cherepanova, S.V., Litvak, G.S., Burgina, E.B., Kustova, G.N., Kolomiichuk, V.N., Ivanov, V.P., Paukshtis, E.A., Golovin, A.V. and Avvakumov, E.G. (1996) Effect of mechanical activation on the real structure and reactivity of iron (III) oxide with corundum-type structure. Journal of Solid State Chemistry, 123, 191202.
Schulze, D.G. (1984) The influence of aluminum on iron oxides. VIII. Unit-cell dimensions of Al-substituted goethites and estimation of Al from them. Clays and Clay Minerals, 32, 3644.
Schulze, D.G. and Schwertmann, U. (1984) The influence of aluminium on iron oxides: X Properties of Al- substituted goethites. Clay Minerals, 19, 521539.
Schwertmann, U. and Carlson, L. (1994) Aluminum influence on iron oxides: XVII. Unit-Cell parameters and aluminum substitution of natural goethites. Soil Science Society of America Journal, 58, 256261.
Silva, A.P.J., Lopes, R.C., Vasconcelos, A.M. and Bahia, R.B.C. (2003) Bacias Sedimentares Paleozóicas e Meso-cenozóicas Interiores. Pp. 5385 in: Geologia, Tectônica e Recursos Minerais do Brasil (Bizzi, , editors). CPRM, Brasília.
Sombroek, W.G. (1966) Amazon Soils. A Reconnaissance of the Soils of the Brazilian Amazon Region. Centre for Agricultural Publications and Documentation, Wageningen, The Netherlands, 292 pp.
Stanjek, H. and Schwertmann, U. (1992) The influence of aluminum on iron oxides: Part XVI, Hydroxyl and aluminum substitution in synthetic hematites. Clays and Clay Minerals, 40, 347354.
Stoch, L. (1974) Mineraly Ilaste (“Clay Minerals”). Geological Publishers, Warsaw [pp 186–193].
Thiel, R. (1963) Zum System a-FeOOH-a-AlOOH. Zeitschrift für anorganische und allgemeine Chemie, 326, 7078.
Trolard, F. and Tardy, Y. (1989) A model of Fe(3+)kaolinite, Al(3+)-Goethite, Al(3+)-Hematite equilibria in laterites. Clay Minerals, 24, 121.
Toby, H.B. (2006) R factors in Rietveld analysis: How good is good enough? Powder Diffraction, 21, 6770.
Yeskis, D., Koster van Groos, A. and Guggenheim, S. (1985) The dehydroxylation of kaolinite. American Mineralogist, 70, 159164.


An application of the Rietveld refinement method to the mineralogy of a bauxite-bearing regolith in the Lower Amazon

  • Leonardo Boiadeiro Ayres Negrão (a1), Marcondes Lima da Costa (a1), Herbert Pöllmann (a2) and Axel Horn (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed