Skip to main content Accessibility help
×
Home

Ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18, a new mineral from the Severo-Kambalny geothermal field, Kamchatka, Russia

  • Elena S. Zhitova (a1) (a2), Oleg I. Siidra (a1) (a3), Dmitry I. Belakovsky (a4), Vladimir V. Shilovskikh (a5), Anton A. Nuzhdaev (a2) and Rezeda M. Ismagilova (a1)...

Abstract

Ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18, is a new voltaite-group mineral. The mineral was discovered at the Severo-Kambalny (North-Kambalny) geothermal field, Kambalny volcanic ridge, Southern Kamchatka, Russia. Ammoniovoltaite forms at ~100°C around geothermal gas/steam vents in association with alunogen, tschermigite and pyrite. Crystals of ammoniovoltaite have euhedral habit, are up to 50 µm in size and grow on alunogen plates. Ammoniovoltaite is black with vitreous lustre, opaque, brittle and water-soluble. Neither cleavage nor parting is found, the fracture is conchoidal. The mineral is isotropic, with the refractive index n = 1.602(2) (589 nm). Infrared spectra contain an absorption band at 1433 cm–1 distinctive for the ammonium ion. The chemical composition is (iron content is given in accordance with Mössbauer data, H2O calculated from a crystal-structure refinement, wt.%): FeO 13.26, Fe2O3 11.58, MgO 2.33, ZnO 0.04, Al2O3 2.74, SO3 47.46, K2O 0.19, CaO 0.11, (NH4)2O 2.96, H2O 16.03, total 96.70. The empirical formula based on S = 12 atoms per formula unit is [(NH4)1.88K0.08Ca0.04]Σ2.00(Fe2+3.74Mg1.17Fe3+0.05Zn0.01)Σ4.97(Fe3+2.89Al0.09)Σ2.98Al1.00(SO4)12.00(H2O)18.00. The crystal structure has been refined to R1 = 0.031 and 0.030 on the basis of 1217 and 1462 unique reflections with I >2σ(I) collected at 100 K and room temperature, respectively. Ammoniovoltaite is the ammonium analogue of voltaite. The mineral is cubic, Fd $\bar{3}$ c, a = 27.250(1) Å and V = 20234(3) Å3 (at 100 K); and a = 27.322(1) Å and V = 20396(3) Å3 (at RT), with Z = 16. The strongest lines of the powder X-ray diffraction pattern [d, Å (I, %) (hkl)] are: 9.67 (74) (022), 7.90 (56) (222), 5.58 (84) (422), 3.560 (100) (731), 3.418 (100) (008) and 2.8660 (37) (931). A brief review of ammonium minerals from various volcanically active geological environments is given.

Copyright

Corresponding author

Footnotes

Hide All

Associate Editor: Anthony Kampf

Footnotes

References

Hide All
Bechi, E. (1854) Analysis of several native borates: larderellite, (new species). American Journal of Science, 67, 129130.
Beveridge, D. and Day, P. (1979) Charge transfer in mixed valence solids. Part 9. Preparation, characterization, and optical spectroscopy of the mixed valence mineral voltaite [aluminum pentairon(II) triiron(III) dipotassium dodecasulfate 18-hydrate] and its solid solutions with cadmium(II). Journal of the Chemical Society, Dalton Transactions, 10, 648653.
Bridge, P.J. and Robinson, B.W. (1983) Niahite – a new mineral from Malaysia. Mineralogical Magazine, 47, 7980.
Britvin, S.N., Dolivo-Dobrovolsky, D.V. and Krzhizhanovskaya, M.G. (2017) Software for processing of X-ray powder diffraction data obtained from the curved image plate detector of Rigaku RAXIS Rapid II diffractometer. Zapiski Rossiiskogo Mineralogicheskogo Obshchetstva, CXLVI, 104107 [in Russian with English abstract].
Bruker-AXS (2014) APEX2. Version 2014.11–0. Madison, Wisconsin, USA
Bruker-AXS (2009) Topas V4.2: General Profile and Structure Analysis Software for Powder Diffraction Data. Karlsruhe, Germany.
Campostrini, I., Demartin, F., Gramaccioli, C.M. and Russo, M. (2011) Vulcano – Tre secoli di mineralogia. Associazione Micro-mineralogica Italiana, Cremona, 344 pp. [in Italian].
Chukanov, N.V. (2014) Infrared Spectra of Mineral Species: Extended Library. Springer-Verlag GmbH, Dordrecht-Heilderberg-New York-London, 1726 pp.
Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Pekov, I.V., Belakovskiy, D.I. and Britvin, S.N. (2015) Möhnite, (NH4)K2Na(SO4)2, a new guano mineral from Pabellon de Pica, Chile. Mineralogy and Petrology, 109, 643648.
Chukanov, N.V., Aksenov, S.M., Rastsvetaeva, R.K., Möhn, G., Rusakov, V.S., Pekov, I.V., Scholz, R., Eremina, T.A., Belakovskiy, D.I. and Lorenz, J.A. (2016) Magnesiovoltaite, K2Mg2+5Fe3+3Al[SO4]12·18H2O, a new mineral from the Alcaparrosa mine, Antofagasta region, Chile. European Journal on Mineralogy, 28, 100510017.
Demartin, F., Castellano, C. and Campostrini, I. (2013) Aluminopyracmonite, (NH4)3Al(SO4)3, a new ammonium aluminium sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. Mineralogical Magazine, 77, 443451.
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2009 a) Brontesite, (NH4)3PbCl5, a new product of fumarolic activity from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 47, 12371243.
Demartin, F., Campostrini, I. and Gramaccioli, C.M. (2009 b) Panichiite, natural ammonium hexachlorostannate(IV), (NH4)2SnCl6, from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 47, 367372.
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010 a) Adranosite, (NH4)4NaAl2(SO4)4Cl(OH)2, a new ammonium sulfate chloride from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 315321.
Demartin, F., Gramaccioli, C.M. and Campostrini, I. (2010 b) Pyracmonite, (NH4)3Fe(SO4)3, a new ammonium iron sulfate from La Fossa crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 48, 307313.
Demartin, F., Campostrini, I., Castellano, C. and Gramaccioli, C.M. (2012) Argesite, (NH4)7Bi3Cl16, a new mineral from La Fossa Crater, Vulcano, Aeolian Islands, Italy: A first example of the [Bi2Cl10]4− anion. American Mineralogist, 97, 14461451.
Demartin, F., Castellano, C. and Campostrini, I. (2014) Therasiaite, (NH4)3KNa2Fe2+Fe3+(SO4)3Cl5, a new sulfate chloride from La Fossa Crater, Vulcano, Aeolian islands, Italy. Mineralogical Magazine, 78, 203213.
Demartin, F., Castellano, C. and Gramaccioli, C.M. (2015) Campostriniite, (Bi3+,Na)3(NH4,K)2Na2(SO4)6·H2O, a new sulfate isostructural with görgeyite, from La Fossa Crater, Vulcano, Aeolian Islands, Itlay. Mineralogical Magazine, 79, 10071018.
Dunning, G.E. and Cooper, J.F. (1993) History and minerals of the Geysers Sonoma County, California. The Mineralogical Records, 24, 339354.
Ertl, A., Dyar, M.D., Hughes, J.M., Brandstätter, F., Gunter, M.E. and Prem, M. (2008) Pertlikite, a new tetragonal Mg-rich member of voltaite group from Madeni Zakh, Iran. The Canadian Mineralogist, 46, 661669.
Fedotov, S.A. and Markhinin, Ye.K. (editors) (1983) The Great Tolbachik Fissure Eruption: geological and geophysical data 1975–1976. Cambridge. Cambridge University Press, Cambridge, UK.
Gangé, O.C. and Hawthorne, F.C. (2015) Comprehensive derivation of bond-valence parameters for ion pairs involving oxygen. Acta Crystallographica, B71, 562578.
Garavelli, C.L. (1964) Mohrite: un nuovo minerale della zona borifera toscana. Atti della Accademia Nazionale dei Lincei. Rendiconti della Classe di Scienze Fisiche, Matematiche e Naturali, 36, 524533.
Garavelli, A. and Vurro, F. (1994) Barberiite, NH4BF4, a new mineral from Vulcano, Aeolian Islands, Italy. American Mineralogist, 79, 381384.
Garavelli, A., Mitolo, D. and Pinto, D. (2012) Thermessaite-(NH4), IMA 2011-077. CNMNC Newsletter No. 12, February 2012. Mineralogical Magazine, 76, 152.
Garavelli, A., Mitolo, D., Pinto, D. and Vurro, F. (2013) Lucabindiite, (K,NH4)As4O6(Cl,Br), a new fumarole mineral from the “La Fossa” crater at Vulcano, Aeolian Islands, Italy. American Mineralogist, 98, 470477.
Gossner, B. and Bäuerlein, T. (1930) Hydrated sulfates containing three metals. Berichte der Deutschen Chemischen Gesellschaft, 63B, 21512155.
Gossner, B. and Bauerlein, T. (1933) Optical anomalies: voltaite-like sulfates. Neues Jahrbuch für Geologie and Paläontologie, 66A, 140.
Gossner, B. and Besslein, J. (1934) Hydrated sulfates of three metals. Centralblatt für Mineralogie, Geologie und Paleontologie, 1934A, 358364.
Gossner, B. and Fell, E. (1932) Sulfates of the voltaite type. Berichte der Deutschen Chemischen Gesellschaft, 65B, 393395.
Hawthorne, F.C., Krivovichev, S.V. and Burns, P.C. (2000) The crystal chemistry of sulfate minerals. Pp. 1112 in: Sulfate Minerals: Crystallography, Geochemistry, and Environmental Significance (Alpers, C.N., Jambor, J.L. and Nordstrom, D.K., editors). Reviews in Mineralogy & Geochemistry, 40. The Mineralogical Society of America and the Geochemical Society, Washington DC.
Kalacheva, E.G., Rychagov, S.N., Nuzhdaev, A.A. and Koroleva, G.P. (2016) The geochemistry of steam hydrothermal occurences in the Koshelev volcanic massif, southern Kamchatka. Journal of Volcanology and Seismology, 10, 188202.
Kampf, A.R., Richards, R.P., Nash, B.P., Murowchick, J.B., Rakovan, J.F. (2016) Carlsonite, (NH4)5Fe3+3O(SO4)6·7H2O, and huizingite-(Al), (NH4)9Al3(SO4)8(OH)2·4H2O, two new minerals from a natural fire in an oil-bearing shale near Milan, Ohio. American Mineralogist, 101, 20952107.
Krohn, M.D., Kendall, C., Evans, J.R. and Fries, T.L. (1993) Relations of ammonium minerals at several hydrothermal systems in the western U.S. Journal of Volcanology and Geothermal Research, 56, 401403.
Li, W., Chen, G. and Sun, S. (1987) Zincovoltaite – a new sulphate mineral. Acta Mineralogica Sinica, 7, 307321.
Maclvor, R.W.E. (1887) On Australian bat guano and some minerals occurring therein. The Chemical News, 55, 215216.
Majzlan, J., Schlicht, H., Wierzbicka-Wieczorek, M., Giester, G., Pöllmann, H., Brömme, B., Doyle, S., Buth, G. and Koch, C.B. (2013) A contribution to the crystal chemistry of the voltaite group: solid solutions, Mössbauer and infrared spectra, and anomalous anisotropy. Mineralogy and Petrology, 107, 221233.
Mandarino, J.A. (2007) The Gladstone–Dale compatibility of minerals and its use in selecting mineral species for further study. The Canadian Mineralogist, 45, 13071324.
Mascagni, P. (1779) Dei lagoni del senese e del volterrano. Sienna, Italy.
Mereiter, K. (1972) Die Kristallstruktur des Voltaits, K2Fe2+5Fe3+3Al[SO4]12·18H2O. Tschermaks Mineralogische Petrographische Mitteilungen, 18, 185202 [in German].
Mitolo, D., Demartin, F., Garavelli, A., Campostrini, I., Pinto, D., Gramaccioli, C.M., Acquafredda, P. and Kolitsch, U. (2013) Adranosite-(Fe), (NH4)4NaFe2(SO4)4Cl(OH)2, a new ammonium sulfate chloride from La Fossa Crater, Vulcano, Aeolian Islands, Italy. The Canadian Mineralogist, 51, 5766.
Nekhoroschev, A.S. (1959) Hydrothermal activity of Kambalny ridge, Southern Kamchatka. Bulletin of Vulcanological station, 28, 2333 [in Russian].
Ogorodova, A.S., Naboko, S.I., Fedotov, S.A. and Vinogradov, V.N. (1971) Trace elements in modern hydrothermally-altered rocks and minerals on the example of hydrothermal field (Yuzhno-Kambalny and Pauzhetskaya geothermal systems). Report of the Institute of Volcanology (Far-eastern branch of the USSR Academy of Sciences), Department of Postmagmatic Processes. Petropavlovsk-Kamchatsky, 141 [in Russian].
Palache, C., Berman, H. and Frondel, C. (1951) The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, Yale University 1837–1892, II, 101–107. John Wiley and Sons, Inc., New York.
Pouchou, J.L. and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”. Pp. 31–75 in: Electron Probe Quantitation (Heinrich, K.F.J. and Newbury, D.E., editors). Plenum Press, New York.
Rychagov, S.N., Sokolov, V.N. and Chernov, M.S. (2010) Hydrothermal clays as a high dynamical colloid-disperse mineralogical-geochemical system. Doklady Akademii Nauk, 435, 806809.
Rychagov, S.N., Nuzhdaev, A.A. and Stepanov, I.I. (2014) Mercury as an indicator of modern ore-forming gas-hydrothermal systems, Kamchatka. Geochemistry International, 52, 131143.
Rychagov, S.N., Sergeeva, A.V. and Chernov, M.S. (2017) Mineral specific associations of hydrothermal clays (Southern Kamchatka). Doklady Akademii Nauk, 477, 16.
Sajó, I.E. (2012) Characterization of synthetic voltaite analogues. European Chemical Bulletin, 1(1–2), 3536.
Scacchi, A. (1873) Contribuzioni mineralogiche per servire alla storia dell’ incendio Vesuviano del Mese di Aprile, 1872. Part 2., Reale Accademia delle Scienze Fisische e Matematiche Naples, 169 [in Italian].
Schaller, W.T. (1933) Ammonioborite, a new mineral. American Mineralogist, 18, 480492.
Sheldrick, G.M. (2015) Crystal structure refinement with SHELXL. Acta Crystallographica, A71, 38.
Szakáll, S., Sajó, I., Fehér, B. and Bigi, S. (2012) Ammoniomagnesiovoltaite, a new voltaite-related mineral species from Pécs-Vasas, Hungary. The Canadian Mineralogist, 50, 6572.
Volynets, V.F., Zadorozhnyy, I.L. and Florenskiy, K.P. (1967) Isotopic composition of nitrogen in the Earth's crust. Geokhimiya, 5, 587593.
Yang, H., Martinelli, L., Tasso, F., Sprocati, A.R., Pinzari, F., Liu, Z., Downs, R.T. and Sun, H.J. (2014) A new biogenic, struvite-related phosphate, the ammonium-analog of hazenite, (NH4)NaMg2(PO4)2·14H2O. American Mineralogist, 99, 17611766.
Zhitova, E.S., Siidra, O.I., Shilovskikh, V.V., Belakovsky, D.I., Nuzhdaev, A.A. and Ismagilova, R.M. (2017) Ammoniovoltaite, IMA 2017-022. CNMNC Newsletter No. 38, August 2017, page 1035; Mineralogical Magazine, 81, 10331038.

Keywords

Ammoniovoltaite, (NH4)2Fe2+5Fe3+3Al(SO4)12(H2O)18, a new mineral from the Severo-Kambalny geothermal field, Kamchatka, Russia

  • Elena S. Zhitova (a1) (a2), Oleg I. Siidra (a1) (a3), Dmitry I. Belakovsky (a4), Vladimir V. Shilovskikh (a5), Anton A. Nuzhdaev (a2) and Rezeda M. Ismagilova (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed