Skip to main content Accessibility help
×
Home

Adsorption and diffusion of strontium in simulated rock fractures quantified via ion beam analysis

  • T. Ohe (a1), B. Zou (a2), K. Noshita (a3), I. Gomez-Morilla (a4), C. Jeynes (a4), P. M. Morris (a2) and R. A. Wogelius (a2)...

Abstract

An experimental technique has been developed and applied to the problem of determining effective diffusion coefficients and partition coefficients of Sr in low permeability geological materials. This technique, the micro-reactor simulated channel method (MRSC), allows rapid determination of contaminant transport parameters with resulting values comparable to those determined by more traditional methods and also creates product surfaces that are amenable for direct chemical analysis. An attempt to further constrain mass flux was completed by detailed ion beam analysis of polished tuff surfaces (tuff is a polycrystalline polyminerallic aggregate dominated by silicate phases) that had been reacted with Sr solutions at concentrations of 10−5, 10−3 and 10−1 mol l−1. Ion beam analysis was carried out using beams of both protons (using particle induced X-ray emission and elastic backscattering spectrometry or EBS) and alpha-particles (using Rutherford backscattering spectrometry). The ion beam analyses showed that increased solution concentrations resulted in increased surface concentrations and that in the highest concentration experiment, Sr penetrated to at least 4 μm below the primary interface. The Sr surface concentrations determined by EBS were 0.06 (±0.05), 0.87 (±0.30) and 2.40 (±1.0) atomic weight % in the experiments with starting solution concentrations of 10−5, 10−3, and 10−1 mol l−1, respectively.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Adsorption and diffusion of strontium in simulated rock fractures quantified via ion beam analysis
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Adsorption and diffusion of strontium in simulated rock fractures quantified via ion beam analysis
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Adsorption and diffusion of strontium in simulated rock fractures quantified via ion beam analysis
      Available formats
      ×

Copyright

© [2012] The Mineralogical Society of Great Britain and Ireland. This is an open access article distributed under the terms of the Creative Commons Attribution (CC BY) licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Corresponding author

Footnotes

Hide All

Current address: Technische Universität Dresden, Institut für Strömungsmechanik, Lehrstuhl für Magnetofluiddynamik, 01062 Dresden, Germany

Footnotes

References

Hide All
Akiba, K. and Hashimoto, H. (1990) Distribution coefficient of strontium on a variety of minerals and rocks. Journal of Nuclear Science and Technology, 27, 275279.
Blaauw, M., Campbell, J.L., Fazinic, S., Jaksic, M., Orlic, I. and Van Espen, P. (2002) The 2000 IAEA intercomparison of PIXE spectrum. Nuclear Instruments and Methods in Physics Research, B189, 113122.
Deer, W.A., Howie, R.A. and Zussman, J. (1992) An Introduction to the Rock-Forming Minerals, second edition. Pearson Education, Harlow, UK.
Grime, G.W. (1996) The ‘‘Q factor’’ method: quantitative microPIXE analysis using RBS normalisation. Nuclear Instruments and Methods in Physics Research, B109, 170174.
Grime, G.W., Watt, F., Wogelius, R.A. and Jamtveit, B. (1993) Processing micro PIXE lines can data - studies of arsenic zoning in skarn garnets. Nuclear Instruments and Methods in Physics Research, B77, 410414.
Gurbich, A.F. (2010) Evaluated differential crosssections for IBA. Nuclear Instruments and Methods in Physics Research, B268, 17031710.
Iijima, A. (1980) Geology of natural zeolites and zeolitic rocks. Pure and Applied Chemistry, 52, 21152130.
Jeynes, C., Barradas, N.P., Marriott, P.K., Boudreault, G., Jenkin, M., Wendler, E. and Webb, R.P. (2003) Elemental thin film depth profiles by ion beam analysis using simulated annealing - a new tool. Journal of Physics D: Applied Physics, 36, R97R126.
Jeynes, C., Bailey, M.J., Bright. N.J., Christopher, M.E., Grime, G.W., Jones, B.N., Palitsin, V.V. and Webb, R.P. (2012) Total IBA - where are we? Nuclear Instruments and Methods in Physics Research, B271, 107118.
Li, Z., Alessi, D. and Allen, L. (2002) Influence of quaternary ammonium on sorption of selected metal cations onto clinoptilolite zeolite. Journal of Environmental Quality, 31, 11061114.
Okuyama, K., Sasahira, A, Noshita, K. and Ohe, T.A. (2008) Method for determining both diffusion and sorption coefficients of rock medium within a few days by adopting a micro-reactor technique. Applied Geochemistry, 23, 21302136.
Papelis, C. and Um, W. (2003) Evaluation of Cesium, Strontium, and Lead Sorption, Desorption, and Diffusion in Cores from Western Pahute Mesa, Nevada Test Site, Based on Macroscopic and Spectroscopic Investigation. Department of Energy Publication No. 45187, DOE/NV/13609-16. US Department of Energy, Nevada, USA.
Patanker, S.V. (1980) Numerical Heat Transfer and Fluid Flow. Taylor & Francis, London.
Rancon, D. (1986) Influence of concentration distributions in solid medium on the assessment of radioelement distribution between the liquid and solid phases. Pp. 6471.in: Application of Distribution Coefficients to Radiological Assessment Models (T.H. Sibley and C. Myttenaere, editors). Elsevier Applied Science, London.
Seitz, M.G., Wogelius, R.A. and Flower, M.F. (1987) Nuclear waste elements slip through hydrothermally altered basalt. Chemical Geology, 64, 109119.
Simon, A., Jeynes, C., Webb, R.P., Finnis, R., Tabatabian, Z., Sellin, P.J., Breese, M.B.H., Fellows, D.H. Van den Broek, B. and Gwilliam, R.M. (2004) The new Surrey ion beam analysis facility. Nuclear Instruments and Methods in Physics Research, B219-B220, 405409.
Skagius, K. and Neretnieks, I. (1982) Diffusion in crystalline rock. Pp. 509518.in: Scientific Basis for Nuclear Waste Management V (V.W. Lutze, editor). Elsevier, Amsterdam.
Skagius, K. and Neretnieks, I. (1988) Measurement of cesium and strontium diffusion in biotite gneiss. Water Resources Research, 24, 7584.
Sudicky, E.A. and Frind, E.O. (1982) Contaminant transport in fractured porous media: analytical solutions for a system of parallel fractures. Water Resources Research, 18, 16341642.
Takasaka, A., Matsuda,Y. and Ito, H. (1989) Purification of Itaya zeolite on an industrial scale and its characteristics. Nihon Kagakukai-Shi, 3, 621627. [in Japanese].
Tsukamoto, M. and Ohe, T. (1991) Intraparticle diffusion of cesium and strontium cations into rock materials. Chemical Geology, 90, 3144.
Van Brakel, J. and Heertjes, P.M. (1974) Analysis of diffusion in macroporous media in terms of porosity, a tortuosity and a constrictivity factor. International Journal of Heat and Mass Transfer, 17, 10931103.
Wogelius, R.A., Fraser, D.G., Feltham, D. and Whiteman, M. (1992) Trace elements in dolomite: proton microprobe data and constraints on fluid compositions. Geochimica et Cosmochimica Acta, 56, 319334.
Wogelius, R.A., Fraser, D.G., Grime, G.W. and Wall, G.R.T. (1997) Trace element and isotopic zonation in vein calcite from the Mendip Hills, UK, with spatial-process correlation analysis. Geochimica et Cosmochimica Acta, 61, 20372051.
Woolf, L.A. (1975) Tracer diffusion of tritiated heavy water (DTO) in heavy water (D2O) under pressure. Journal of the Chemical Society, Faraday Transactions, 1, 72, 12671273.
Yamaguchi, T., Sakamoto, Y. and Senoo, M. (1993) Consideration on effective diffusivity of strontium in granite. Journal of Nuclear Science and Technology, 30, 796803.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed