Hostname: page-component-7d684dbfc8-8ckrc Total loading time: 0 Render date: 2023-09-25T13:55:34.569Z Has data issue: false Feature Flags: { "corePageComponentGetUserInfoFromSharedSession": true, "coreDisableEcommerce": false, "coreDisableSocialShare": false, "coreDisableEcommerceForArticlePurchase": false, "coreDisableEcommerceForBookPurchase": false, "coreDisableEcommerceForElementPurchase": false, "coreUseNewShare": true, "useRatesEcommerce": true } hasContentIssue false

Moraskoite, Na2Mg(PO4)F, a new mineral from the Morasko IAB-MG iron meteorite (Poland)

Published online by Cambridge University Press:  02 January 2018

Łukasz Karwowski
Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
Joachim Kusz
Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland
Andrzej Muszyński
Geological Institute, Adam Mickiewicz University, Maków Polnych 16, 61-606 Poznań, Poland
Ryszard Kryza*
Institute of Geological Sciences, University of Wrocław, Cybulskiego 30, 50-205 Wrocław, Poland
Maciej Sitarz
Faculty of Materials Science and Ceramics, AGH University of Science and Technology, 30-059 Kraków, Poland
Evgeny V. Galuskin
Department of Geochemistry, Mineralogy and Petrography, Faculty of Earth Sciences, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland


Moraskoite, a new natural phosphate of composition Na2Mg(PO4)F, has been found in the Morasko IAB-MG iron meteorite. The new phosphate occurs in a graphite-troilite inclusion enclosed in a kamacite-taenite matrix. Associated minerals in the inclusions are chlorapatite, buchwaldite, brianite, merrillite, a new phosphate phase of composition Na4MgCa3(PO4)4, chromite, enstatite (bronzite), kosmochlor, kosmochlor–augite, olivine, albite, orthoclase, quartz, cohenite, schreibersite, nickelphosphide, altaite, pyrrhotite, sphalerite, daubreelite, djerfischerite, whitlockite and native Cu. The inclusions are rimmed by a schreibersite-cohenite halo. Moraskoite forms aggregates up to 1.5 mm in size, with individual grains 20–300 μm across. It is colourless and transparent, with a white streak and vitreous lustre; fluorescence is weak blue in ultraviolet radiation (254 and 360 nm); hardness is 4–5; it has irregular, conchoidal fracture and cleavage is rarely observed. Calculated density (using the empirical formula) is 2.925 g cm–3. The moraskoite structure (Pbcn, a = 5.2117(10), b = 13.711(3), c = 11.665(2) Å, V = 833.6(3) Å3 and Z = 8) is similar to that of its synthetic analogue. The strongest diffraction lines of the moraskoite powder diffraction pattern are as follows (dhkl, I): 3.909(75), 3.382(52), 2.955(90), 2.606(100), 2.571(96), 2.545(68), 1.691 (67). In the Raman spectrum, the following characteristic bands are distinguished (cm–1, strong bands bold): 1114, 1027, 962, 589, 438, 336, 308, 279, 262, 244, 193, 184, 147 and 131. The Raman data prove the absence of H2O and CO2. Moraskoite is interpreted as being a primary phosphate, which crystallized together with graphite, troilite and other accessories inside the nodule.

Research Article
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)


Allen, R.O. Jr. and Clark, P.J. (1977) Fluorine in meteorites. Geochimica et Cosmochimica Acta, 41, 581585.CrossRefGoogle Scholar
Benedix, G.K., McCoy, T.J., Keil, K. and Love, S.G. (2000) Meteoritics and Planetary Science, 35, 11271141.CrossRefGoogle Scholar
Buchwald, V.F. (1984) Phosphate minerals in meteorites and Lunar rocks. Pp. 199214. in: Phosphate Minerals (J.O. Nriagu and P.B. Moore, editors). Springer-Verlag, Berlin.Google Scholar
Buseck, P.R. and Holdsworth, E. (1977) Phosphate minerals in pallasite meteorites. Mineralogical Magazine, 41, 91102.CrossRefGoogle Scholar
Corrigan, C.M., Nancy, L., Chabot, N.L., McCoy, T.J., McDonough, W.F., Watson, H.C., Saslow, S.A. and Ash, R.D. (2009) The iron-nickel-phosphorus system: effects on the distribution of trace elements during the evolution of iron meteorites. Geochimica et Cosmochimica Acta, 73, 26742691.CrossRefGoogle Scholar
Czajka, W. (2005) The picture of the hypothetic trajectory Tabarz-Przełazy-Morasko-Jankowo Dolne on the Earth’s ellipsoid. www.astroblemy. pl [accessed December, 2005]. Dominik, B. (1976) Mineralogical and chemical study of coarse octahedrite Morasko. Prace Mineralogiczne Polskiej Akademii Nauk, 47, 753.Google Scholar
Dziel, T., Gała˛zka-Friedman, J. and Karwowski, Ł. (2007) Badania Mossbauerowskie meteorytów Marlow i Morasko. Seminarium Meteorytowe, 2122.Google Scholar
Kwietnia 2005, Olsztyn, Materiały, pp. 1723.Google Scholar
Fegley, B., Jr. and Lewis, J.S. (1979) Volatile element chemistry in the solar nebula: Na, K, F, Cl, Br, and P. Icarus, 41, 439455.CrossRefGoogle Scholar
Frost, R.L., Palmer, S.J., Xi, Y., Čejka, J., Sejkora, J. and Plášil, J. (2013) Raman spectroscopic study of the hydroxy-phosphate mineral plumbogummite PbAl3(PO4)2(OH,H2O)6. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 103, 431434.CrossRefGoogle Scholar
Frost, R.L., López, A., Xi, Y. and Scholz, R. (2014a) A study of the phosphate mineral kapundaite NaCa(Fe3+)4(PO4)4(OH)3·5(H2O) using SEM/EDX and vibrational spectroscopic methods. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 122, 400404.CrossRefGoogle Scholar
Frost, R.L., López, A., Theiss, F.L., Scholz, R. and Souza, L. (2014b) The molecular structure of the phosphate mineral kidwellite NaFe9 3+(PO4)6 (OH)·3H2O-A vibrational spectroscopic study. Journal of Molecular Structure, 1074, 429434.CrossRefGoogle Scholar
Frost, R.L., Scholz, R., López, A., Lana, C. and Xi, Y. (2014c) A Raman and infrared spectroscopic analysis of the phosphate mineral wardite NaAl3(PO4) 2(OH)4 · 2(H2O) from Brazil. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 126, 164169.CrossRefGoogle Scholar
Fuchs, L.H., Olsen, E. and Henderson, E.P. (1967) Occurrence of brianite and panethite, two new phosphate minerals from the Dayton meteorite. Geochimica et Cosmochimica Acta, 31, 17111719.CrossRefGoogle Scholar
Hughes, J.M., Jolliff, B.L. and Gunter, M.E. (2006) The atomic arrangements of merrillite from the Fra Mauro Formation, Apollo 14 lunar mission: the first structure of merrillite from the Moon. American Mineralogist, 91, 15471552.CrossRefGoogle Scholar
Jastrze˛bski, W., Sitarz, M., Rokita, M. and Bułat, K. (2011) Infrared spectroscopy of different phosphates structures. Spectrochimica Acta Part A, 79, 722. Jolliff, B.L., Hughes, J.M., Freeman, J.J. and Zeigler, R.A. (2006) Crystal chemistry of lunar merrillite and comparison to other meteorite and planetary suites of whitlockite and merrillite. American Mineralogist, 91, 15831595.Google Scholar
Karwowski, Ł. and Muszyński, A. (2006) Silicates association in nodules of iron meteorites Seeläsgen, Morasko and Jankowo Dolne. Mineralogical Society of Poland, Special Papers, 29, 140143.Google Scholar
Karwowski, Ł. and Muszyński, A. (2008) Multimineral inclusions in the Morasko coarse octahedrite. Meteoritics and Planetary Science, 43, A71.Google Scholar
Karwowski, Ł., Muszyński, A., Kryza, R. and Helios, K. (2009a) Phosphates in the Morasko meteorite. Mineralogia, Special Papers, 35, 9091.Google Scholar
Karwowski, Ł., Muszyński, A., Kryza, R. and Pilski, A. (2009b) Polimineralne nodule w gruboziarnistym meteorycie Morasko. Acta Societatis Metheoriticae Polonorum, 1, 5258.Google Scholar
Karwowski, Ł., Helios, K., Kryza, R., Muszyński, A. and Drożdżewski, P. (2013a) Raman spectra of selected mineral phases of the Morasko iron meteorite. Journal of Raman Spectroscopy, 44/8, 11811186.CrossRefGoogle Scholar
Karwowski, Ł., Kusz, J., Muszyński, A., Kryza, R., Sitarz, M. and Galuskin, E.V. (2013b) Moraskoite, IMA 2013-084. CNMNC Newsletter No. 18, December 2013, page 3254; Mineralogical Magazine, 77, 32493258.Google Scholar
Krivovichev, S.V. (2008) Minerals with antiperovskite structure: a review. Zeitschrift für Kristallographie, 223, 109113.Google Scholar
Krivovichev, S.V., Yakovenchuk, V.N., Ivanyuk, G.Y., Pakhomovsky, Y.A., Armbruster, T. and Selivanova, E.A. (2007) The crystal structure of nacaphite, Na2Ca(PO4)F: a re-investigation. The Canadian Mineralogist, 45, 915920.CrossRefGoogle Scholar
McCoy, T.J., Steele, I.M., Keil, K., Leonard, B.F. and Endress, M. (1994) Chladniite, Na2CaMg7(PO4)6: a new mineral from the Carlton (IIICD) iron meteorite. American Mineralogist, 79, 375380.Google Scholar
McCubbin, F.M, Shearer, C.K., Burger, P.V., Hauri, E.H., Wang, J., Elardo, S.M. and Papike, J.J. (2014) Volatile abundances of coexisting merrillite and apatite in the martian meteorite Shergotty: implications for merrillite in hydrous magmas. American Mineralogist, 99, 13471354.CrossRefGoogle Scholar
McPherson, G.L. and Chang, J.R. (1973) Infrared and structural studies of MIM’IIX3 type transition metal halides. Inorganic Chemistry, 12, 11961198.CrossRefGoogle Scholar
Muszyński, A., Stankowski, W., Dzierżanowski, P. and Karwowski, Ł. (2001) New data about the Morasko meteorite. Mineralogical Society of Poland, Special Papers, 18, 134137.Google Scholar
Muszyński, A., Kryza, R., Karwowski, Ł., Pilski, A.S. and Muszyńska, J. (editors) (2012) Morasko. Najwie˛kszy deszcz meteorytów ż elaznych w Europie s´rodkowej [Morasko. The largest iron meteorite shower in Central Europe]. Studia i Prace z Geografii i Geologii, 28. Bogucki Wydawnictwo Naukowe, Poznań. Nazarov, M.A., Teplyakova, S.N., Brandstaetter, F. and Ntaflos, Th. (2013) Fluorine-bearing merrillite from a silicate inclusion of the Elga (IIE) iron meteorite. 44th Lunar and Planetary Science Conference, 1342 [available at pdf/1342.pdf]. Olsen, E. and Fush, L.H. (1967) The state of oxidation of some iron meteorites. Icarus, 6, 242253.Google Scholar
Olsen, E.J., Kracher, A., Davis, A.M., Steele, I.M., Hutcheon, I.D. and Bunch, T.E. (1999) The phosphates in IIIIAB iron meteorites. Meteoritics and Planetary Science, 34, 285300.CrossRefGoogle Scholar
Patin˜o-Douce, A.E. and Roden, M.F. (2006) Apatite as a probe of halogen and water fugacities in the terrestrial planets. Geochimica et Cosmochimica Acta, 70, 31733196.CrossRefGoogle Scholar
Pilski, A.S., Skirzewska, M., Smuła, Ł. and Muszyński, A. (2012) Rekordowy okaz Moraska. Meteoryt, 4(84), 37.Google Scholar
Pilski, A.S., Wasson, J.T., Muszyński, A., Kryza, R., Karwowski, Ł. and Nowak, M. (2013) Low-Ir IAB irons from Morasko and other locations in central Europe: One fall, possibly distinct from IAB-MG. Meteoritics and Planetary Science, 48, 25312541.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica A, 64, 112122.CrossRefGoogle Scholar
Swafford, S.H. and Holt, E.M. (2002) New synthetic approaches to monophosphate fluoride ceramics: synthesis and structural characterization of Na2Mg(PO4)F and Sr5(PO4)3F. Solid State Sciences, 4, 807812.CrossRefGoogle Scholar
Supplementary material: PDF

Karwowski et al. supplementary material

Supplemental Table 5

Download Karwowski et al. supplementary material(PDF)
PDF 152 KB