Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-55wx7 Total loading time: 0.291 Render date: 2021-03-07T06:38:44.304Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

A hibonite-spinel-corundum-hematite assemblage in plagioclase-clinopyroxene pyrometamorphic rocks, Hatrurim Basin, Israel: mineral chemistry, genesis and formation temperatures

Published online by Cambridge University Press:  02 July 2018

Victor V. Sharygin
Affiliation:
Institute of Geology and Mineralogy SB RAS, pr. Koptyuga 3, Novosibirsk, 630090, Russia; and Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090, Russia; and Institute of Physics and Technology, Ural Federal University, ul. Mira 19, Ekaterinburg, 620002, Russia
Corresponding
E-mail address:

Abstract

The intergrowths of Fe-rich corundum + Al-rich hematite + spinel + hibonite have been found as an assemblage in a plagioclase-clinopyroxene rock (paralava, former hornfels) at the Hatrurim Basin, Hatrurim combustion metamorphic Formation. Most spinels show oriented exsolution structures and vary from (Mg0.75 ${\rm Fe}_{{\rm 0}{\rm. 25}}^{2 +} $ )(Al1.80 ${\rm Fe}_{{\rm 0}{\rm. 20}}^{3 +} $ )O4 (with exsolutions) to (Mg0.77 ${\rm Fe}_{{\rm 0}{\rm. 23}}^{2 +} $ )(Al1.95 ${\rm Fe}_{{\rm 0}{\rm. 05}}^{3 +} $ )O4 (homogeneous) indicating a tendency towards magnesioferrite and magnetite, and enrichment in NiO (up to 1.9 wt.%) and ZnO (up to 1.4 wt.%). Hibonite is Ti rich (TiO2 > 8 wt.%) and close to CaAl9Fe3+(Mg,Fe2+)TiO19. Corundum varies in Fe2O3 (4.2–11.8 wt.%). Hematite is also inhomogeneous and contains oriented exsolution structures of corundum. It shows variable concentrations of TiO2 (0.7–5.6 wt.%), Al2O3 (0.7–8.6 wt.%), Cr2O3 (0.2–1.5 wt.%), V2O3 (0.1–1.0 wt.%) and MgO (0.3–2.0 wt.%). Crystallization of this specific assemblage is assumed to be at 1000–1200°C using evaluations for the corundum hematite pair with reference to published experimental data. The active role of superheated oxidised volatiles is suggested during both crystallisation of this corundum-bearing association and host-rock transformation (melting event for hornfels → paralava).

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Associate Editor: Craig Storey

References

Agrell, S.O., Chinner, G.A. and Rowley, P.D. (1999) The black skarns of Pine Canyon, Piute County, Utah. Geological Magazine, 136, 343359.CrossRefGoogle Scholar
Ananyev, S.A., Konovalenko, S.I., Rastsvetaeva, R.K., Aksenov, S.M., Chukanov, N.V., Sapozhnikov, A.N., Zagorsky, V.E. and Virus, A.A. (2011) Tashelgite, CaMgFe2+Al9O16(OH), a new mineral species from calc-skarnoid in Gorny Shoria. Geology of Ore Deposits, 53, 751757.CrossRefGoogle Scholar
Bentor, Y.K., Gross, Sh. and Heller, L. (1963) High temperature minerals in non-metamorphosed sediments in Israel. Nature, 199, 478479.CrossRefGoogle Scholar
Bentor, Y.K. and Vroman, A. (1960) The Geological Map of Israel 1:100000, Sheet 16 – Mount Sedom (with explanatory text). Geological Survey of Israel, Jerusalem.Google Scholar
Britvin, S.N., Murashko, M.N., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2015) Earth's phosphides in Levant and insights into the source of Archean prebiotic phosphorus. Scientific Reports, 5, 8355.CrossRefGoogle ScholarPubMed
Burg, A., Starinsky, A., Bartov, Y. and Kolodny, Ye. (1991) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107124.Google Scholar
Burg, A., Kolodny, Ye. and Lyakhovsky, V. (1999) Hatrurim-2000: the “Mottled Zone” revisited, forty years later. Israel Journal of Earth Sciences, 48, 209223.Google Scholar
Caracas, R. (2010) Spin and structural transitions in AlFeO3 and FeAlO3 perovskite and post-perovskite. Physics of the Earth and Planetary Interiors, 182, 1017.CrossRefGoogle Scholar
Doyle, P.M., Schofield, P.F., Berry, A.J., Walker, A.M. and Knight, K.S. (2014) Substitution of Ti3+ and Ti4+ in hibonite (CaAl12O19). American Mineralogist, 99, 13691382.CrossRefGoogle Scholar
Feenstra, A., Samann, S., Wunder, B., 2005. An experimental study of Fe-Al-solubility in the system corundum-hematite up to 40 kbar and 1300°C. Journal of Petrology, 46, 18811892.CrossRefGoogle Scholar
Fleischer, L. and Varshavsky, A. (2002) A Lithostratigraphic Data Base of Oil and Gas Wells Drilled in Israel. Ministry of National Infrastructures, Oil and Gas Unit. Report No. OG/9/02. Geophysical Institute of Israel, Report No 874/202/02, 280 p.Google Scholar
Galuskin, E.V., Galuskina, I.O., Kusz, J., Armbruster, T., Marzec, K.M., Dzierżanowski, P. and Murashko, M. (2014) Vapnikite Ca3UO6 – a new double-perovskite mineral from pyrometamorphic larnite rocks of the Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 78, 571581.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Ye., Dulski, M., Murashko, M., Dzierżanowski, P., Sharygin, V.V., Krivovichev, S.V. and Wirth, R. (2015 a) Mayenite supergroup, Part III: Fluormayenite, Ca12Al14O32[□4F2] and fluorkyuygenite, Ca12Al14O32[(H2O)4F2], two new minerals from pyrometamorphic rock of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy, 27, 123136.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Galuskina, I.O., Vapnik, Y., Murashko, M., Wlodyka, R. and Dzierżanowski, P. (2015 b). New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part I. Nabimusaite, KCa12(SiO4)4(SO4)2O2F, from larnite rocks of Jabel Harmun, Palestinian Autonomy, Israel. Mineralogical Magazine, 79, 10611072.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Ye., Wlodyka, R., Dzierżanowski, P. and Murashko, M. (2015 c) New minerals with a modular structure derived from hatrurite from the pyrometamorphic Hatrurim Complex. Part II. Zadovite, BaCa6[(SiO4)(PO4)](PO4)2F and aradite, BaCa6[(SiO4)(VO4)](VO4)2F, from paralavas of the Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 10731087.CrossRefGoogle Scholar
Galuskin, E.V., Galuskina, I.O., Gfeller, F., Krueger, B., Kusz, J., Vapnik, Ye., Dulski, M. and Dzierzanowski, P. (2016) Silicocarnotite, Ca5[(SiO4)(PO4)](PO4), a new “old” mineral from the Negev Desert, Israel, and the ternesite-silicocarnotite solid solution: indicators of high-temperature alteration of pyrometamorphic rocks of the Hatrurim Complex, Southern Levant. European Journal of Mineralogy, 28, 105123.CrossRefGoogle Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Armbruster, T., Krzatala, A., Vapnik, Y., Kusz, J., Dulski, M., Gardocki, M., Gurbanov, A.G. and Dzierżanowski, P. (2017) New minerals with a modular structure derived from hatrurite from the pyrometamorphic rocks. Part III. Gazeevite, BaCa6(SiO4)2(SO4)2O, from Israel and the Palestine Autonomy, South Levant, and from South Ossetia, Greater Caucasus. Mineralogical Magazine, 81, 499513.CrossRefGoogle Scholar
Galuskina, I.O., Vapnik, Y., Lazic, B., Armbruster, T., Murashko, M. and Galuskin, E.V. (2014) Harmunite CaFe2O4: A new mineral from the Jabel Harmun, West Bank, Palestinian Autonomy, Israel. American Mineralogist, 99, 965975.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Pakhomova, A.S., Widmer, R., Armbruster, T., Krueger, B., Grew, E.S., Vapnik, Ye., Dzierzanowski, P. and Murashko, M. (2017 a) Khesinite, Ca4Mg2${\rm Fe}_{{\rm 10}}^{3 +} $O4[(${\rm Fe}_{{\rm 10}}^{3 +} $Si2)O36], a new rhonite-group (sapphirine supergroup) mineral from the Negev Desert, Israel – natural analogue of the SFCA phase. European Journal of Mineralogy, 29, 101116.CrossRefGoogle Scholar
Galuskina, I.O., Galuskin, E.V., Prusik, K., Vapnik, Y., Juroszek, R., Jeżak, L. and Murashko, M. (2017 b) Dzierżanowskite, CaCu2S2 – a new natural thiocuprate from Jabel Harmun, Judean Desert, Palestine Autonomy, Israel. Mineralogical Magazine, 81, 777789.CrossRefGoogle Scholar
Gardosh, M., Kashai, E., Salhov, S., Shulman, H. and Tannenbaum, E. (1997) Hydrocarbon explosion in the southern Dead Sea area. Pp. 5772 in: The Dead Sea: the Lake and its Setting (Niemi, T.N., Ben-Avraham, Z., Gat, J.R., editors). Oxford Press, Oxford, UK.Google Scholar
Gardosh, M., Druckman, Y., Buchbinder, B. and Rybakov, M. (2008) The Levant Basin Offshore Israel: Stratigraphy, Structure, Tectonic Evolution and Implications for Hydrocarbon Exploration. Revised edition. Geological Survey of Israel, Jerusalem, Report GSC/4, 119 pp.Google Scholar
Garfunkel, Z. (1997) The history and formation of the Dead Sea basin. Pp. 3656 in: The Dead Sea: the Lake and its Setting (Niemi, T.N., Ben-Avraham, Z., Gat, J.R., editors). Oxford Press, Oxford, UK.Google Scholar
Geller, Y.I., Burg, A., Halicz, L. and Kolodny, Y. (2012) System closure during the combustion metamorphic “Mottled Zone” event, Israel. Chemical Geology, 334, 2536.CrossRefGoogle Scholar
Gilat, A. (1998) Hydrothermal activity and hydro-explosions as a cause of natural combustion and pyrolysis of bituminous rocks: The case of Pliocene metamorphism in Israel (Hatrurim Formation). Geological Survey of Israel: Current Research, 11, 96102.Google Scholar
Grapes, R. (2011) Pyrometamorphism. Second Edition. Springer Berlin Heidelberg, 365 pp.Google Scholar
Grapes, R., Korzhova, S., Sokol, E. and Seryotkin, Yu. (2011) Paragenesis of unusual Fe-cordierite (sekaninaite)-bearing paralava and clinker from the Kuznetsk coal basin, Siberia, Russia. Contributions to Mineralogy and Petrology, 162, 253273.CrossRefGoogle Scholar
Gross, Sh. (1977) The Mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70, 80 pp.Google Scholar
Gross, Sh. (1984) Occurrence of ye'elimite and ellestadite in an unusual cobble from the “pseudo-conglomerate” of the Hatrurim Basin, Israel. Geological Survey of Israel, Current Research, 1983–84, 1–4.Google Scholar
Gvirtzman, H. and Stanislavsky, E. (2000) Palaeohydrology of hydrocarbon maturation, migration and accumulation in the Dead Sea Rift. Basin Research, 12, 7993.CrossRefGoogle Scholar
Gur, D., Steinitz, G., Kolodny, Y., Starinsky, A. and McWilliams, M. (1995) 40Ar/39Ar dating of combustion metamorphism (“Mottled Zone”, Israel). Chemical Geology, 122, 171184.CrossRefGoogle Scholar
Hall, J.K., Krasheninnikov, A., Hirsch, F., Benjamini, C. and Flexer, A. (2005) Geological framework of the Levant. Volume II: The Levantine Basin and Israel. Historical Productions, Hall, Jerusalem, 826 p.Google Scholar
Hanesch, M. (2009) Raman spectroscopy of iron oxides and (oxy)hydroxides at low laser power and possible applications in environmental magnetic studies. Geophysical Journal International, 177, 941948.CrossRefGoogle Scholar
Hirsch, F., Burg, A. and Avni, Y. (2010) Geological Map of Israel. Scale 1:50,000. Arad sheet 15–IV. Geological Survey of Israel, Jerusalem.Google Scholar
Izokh, A.E., Smirnov, S.Z., Egorova, V.V., Tran, T.A., Kovyazin, S.V., Ngo, T.P. and Kalinina, V.V. (2010) The conditions of formation of sapphire and zircon in the areas of alkali-basaltoid volcanism in Central Vietnam. Russian Geology and Geophysics, 51, 719733.CrossRefGoogle Scholar
Jubb, A.M. and Allen, H.C. (2010) Vibrational spectroscopic characterization of hematite, maghemite, and magnetite thin films produced by vapor deposition. ACS Applied Materials and Interfaces, 2(10), 28042812.CrossRefGoogle Scholar
Khoury, H. and Nassir, S. (1982) High temperature mineralization in Maqarin area, North Jordan. Neues Jahrbuch für Mineralogie – Abhandlungen, 144, 197213.Google Scholar
Khoury, H.N., Sokol, E.V., Kokh, S.N., Seryotkin, Y.V., Nigmatulina, E.N., Goryainov, S.V., Belogub, E.V. and Clark, I.D. (2016) Tululite, Ca14(Fe3+,Al)(Al,Zn,Fe3+,Si,P,Mn,Mg)15O36: a new Ca zincate-aluminate from combustion metamorphic marbles, central Jordan. Mineralogy and Petrology, 110, 125140.CrossRefGoogle Scholar
Kokh, S.N., Sokol, E.V. and Sharygin, V.V., 2014. Ellestadite-group minerals in combustion metamorphic rocks. Pp. 543562 in: Coal and Peat Fires: A Global Perspective (Stracher, G.B., Prakash, A. and Sokol, E.V., editors). Elsevier B.V., New York. Volume 3: Case studies – Coal fires.Google Scholar
Kolodny, Y. (1979) Natural cement factory: a geological story. Pp. 203216 in: Cement Production and Use (Skalny, J., editor). Franklin Pierce College, Rindge, New Hampshire, USA.Google Scholar
Kolodny, Y. and Gross, S. (1974) Thermal metamorphism by combustion of organic matter: isotopic and petrological evidence. The Journal of Geology, 82, 489506.CrossRefGoogle Scholar
Kulikova, K.V. and Varlamov, D.A. (2006) The first finding of corundum in exsolution structures of oxides in gabbroic rocks from the Polar Urals. Doklady of Earth Sciences, 407, 246249.CrossRefGoogle Scholar
Maercklin, N., Haberland, C., Ryberg, T., Weber, M. and Bartov, Y. (2004) Imaging the Dead Sea Transform with scattered seismic waves. Geophysical Journal International, 158, 179186.CrossRefGoogle Scholar
Majzlan, J., Navrotsky, A. and Evans, B.J. (2002) Thermodynamics and crystal chemistry of the hematite-corundum solid solution and the FeAlO3 phase. Physics and Chemistry of Minerals, 29, 515526.CrossRefGoogle Scholar
Matthews, A. and Gross, Sh. (1980) Petrologic evolution of the “Mottled Zone” (Hatrurim) metamorphic complex of Israel. Israel Journal of Earth Sciences, 29, 93106.Google Scholar
Murashko, M.N., Chukanov, N.V., Mukhanova, A.A., Vapnik, Ye., Britvin, S.N., Krivovichev, S.V., Polekhovsky, Yu.S. and Ivakin, I.D. (2011) Barioferrite Ba${\rm Fe}_{{\rm 12}}^{3 +} $O19: a new mineral species of the magnetoplumbite group from the Hatrurim Formation in Israel. Geology of Ore Deposits, 53, 558563.CrossRefGoogle Scholar
Muan, A. and Gee, C.L. (1956) Phase equilibrium studies in the system iron oxide – Al2O3 in air and at 1 atm. O2 pressure. Journal of the American Ceramic Society, 39, 207214.CrossRefGoogle Scholar
Nagashima, M., Armbruster, T. and Hainschwang, T. (2010) A temperature-dependent structure study of gem-quality hibonite from Myanmar. Mineralogical Magazine, 74, 871885.CrossRefGoogle Scholar
Nissenbaum, A. and Goldberg, M. (1980) Asphalts, heavy oils, ozocerite and gases in the Dead Sea Basin. Organic Geochemistry, 2, 167180.CrossRefGoogle Scholar
Novikov, I., Vapnik, Ye. and Safonova, I. (2013) Mud volcano origin of the Mottled Zone, South Levant. Geoscience Frontiers, 4, 597619.CrossRefGoogle Scholar
Picard, L.Y. and Golani, U. (1965) Geological Map of Israel. Scale 1:250,000. Northern Sheet, sheets 1–2. Geological Survey of Israel, Jerusalem.Google Scholar
Pissas, M., Stamopoulos, D., Sanakis, Y. and Simopoulos, A. (2008) Magnetic properties of the magnetoelectric Al2−xFexO3 (x = 0.8, 0.9 and 1). Journal of Physics: Condensed Matter, 20, 415222.Google Scholar
Polli, A.D., Lange, F.E. and Levi, C.G. (1996) Crystallization behavior and microstructure evolution of (Al,Fe)2O3 synthesized from liquid precursors. Journal of American Ceramic Society, 79, 17451755.CrossRefGoogle Scholar
Popović, S., Ristić, M. and Musić, S. (1995) Formation of solid solutions in the system Al2O3–Fe2O3. Materials Letters, 23, 139142.CrossRefGoogle Scholar
Pouchou, I.L. and Pichoir, F. (1985) “PaP” (phi-rho-z) procedure for improved quantitative microanalysis. Pp. 104106. in: Microbeam Analysis (Armstrong, I.T., editor). San Francisco Press; San Francisco, USA.Google Scholar
Rajesh, V.J., Arai, S., Santosh, M. and Tamura, A. (2010) LREE-rich hibonite in ultrapotassic rocks in southern India. Lithos, 115, 4050.CrossRefGoogle Scholar
Reverdatto, V.V. (1970) Facies of Contact Metamorphism. Nedra, Moscow, 271 p. [in Russian].Google Scholar
Sakurai, S., Namai, A., Hashimoto, K. and Ohkoshi, S. (2009) First observation of phase transformation of all four Fe2O3 phases (γ → ε → β → α-phase). Journal of American Chemical Society, 131, 1829918303.CrossRefGoogle Scholar
Seryotkin, Y.V., Sokol, E.V. and Kokh, S.N. (2012) Natural pseudowollastonite: crystal structure, associated minerals, and geological context. Lithos, 133–135, 7590.CrossRefGoogle Scholar
Sharygin, V.V. (2010) Mineralogy of Ca-rich metacarbonate rocks from burned dumps of the Donetsk coal basin. Pp. 162–170. in: Proceedings of “ICCFR2–Second Int. Conf. on Coal Fire Research”, Berlin, Germany.Google Scholar
Sharygin, V.V. and Sokol, E.V. (2017) Phase FeAlO3 in plagioclase-clinopyroxene rock at Hatrurim Basin, Israel. Pp. 323–325 in: 200 th Anniversary Meeting of the Russian Mineralogical Society. S.-Petersburg, Vol. 2. [in Russian].Google Scholar
Sharygin, V.V., Vapnik, Ye., Sokol, E.V., Kamenetsky, V.S. and Shagam, R. (2006) Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim Basin, Israel: composition and homogenization temperatures. Pp. 189192 in: ACROFI I, program with abstracts (Ni, P. and Li, Z., editors). Nanjing University PH, China.Google Scholar
Sharygin, V.V., Sokol, E.V. and Vapnik, Ye. (2008 a) Minerals of the pseudobinary perovskite–brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation (Israel). Russian Geology and Geophysics, 49, 709726.CrossRefGoogle Scholar
Sharygin, V.V., Vapnik, Ye. and Sokol, E.V. (2008 b) Association of hibonite-corundum-spinel-hematite in clinopyroxene-plagioclase hornfels of the Hatrurim Formation, Israel. Pp. 125–128 in: Proceedings of “Fedorov session-2008. S.-Petersburg, Russia [in Russian].Google Scholar
Sharygin, V.V., Lazic, B., Armbruster, T.M., Murashko, M.N., Wirth, R., Galuskina, I.O., Galuskin, E.V., Vapnik, Ye., Britvin, S.N. and Logvinova, A.M. (2013) Shulamitite Ca3TiFe3+AlO8 – a new perovskite-related mineral from Hatrurim Basin, Israel. European Journal of Mineralogy, 25, 97111.CrossRefGoogle Scholar
Shen, A., Bartov, Y., Rosensaft, M. and Weissbort, T. (1998) Geological Map of Israel. Scale 1:200,000, sheets 1–4. Geological Survey of Israel, Jerusalem.Google Scholar
Simon, S.B. and Grossman, L. (2003) Petrography and mineral chemistry of the anhydrous component of the Tagish Lake carbonaceous chondrite. Meteoritics and Planetary Science, 38, 815825.CrossRefGoogle Scholar
Simon, S.B., Davis, A.M. and Grossman, L. (2001) Formation of orange hibonite, as inferred from some Allende inclusions. Meteoritics and Planetary Science, 36, 331350.CrossRefGoogle Scholar
Sokol, E.V., Maksimova, N.V., Nigmatulina, E.N., Sharygin, V.V. and Kalugin, V.M. (2005) Combustion Metamorphism. Izd. SO RAN, Novosibirsk. 284 pp. [in Russian].Google Scholar
Sokol, E.V., Novikov, I.S., Vapnik, Ye. and Sharygin, V.V. (2007) Gas fire from mud volcanoes as a trigger for the appearance of high-temperature pyrometamorphic rocks of the Hatrurim Formation (Dead Sea area). Doklady of Earth Sciences, 413, 474480.CrossRefGoogle Scholar
Sokol, E.V., Novikov, I.S., Zateeva, S.N., Sharygin, V.V. and Vapnik, Ye. (2008) Pyrometamorphic rocks of the spurrite-merwinite facies as indicators of hydrocarbon discharge zones (the Hatrurim Formation, Israel). Doklady of Earth Sciences, 420, 608614.CrossRefGoogle Scholar
Sokol, E., Novikov, I., Zateeva, S., Vapnik, Ye., Shagam, R. and Kozmenko, O. (2010) Combustion metamorphic rocks as indicators of fossil mud volcanism: New implications for the origin of the Mottled Zone, Dead Sea rift area. Basin Research, 22, 414438.CrossRefGoogle Scholar
Sokol, E.V., Kozmenko, O.A., Kokh, S.N. and Vapnik, Ye. (2012) Gas reservoirs in the Dead Sea area: evidence from chemistry of combustion metamorphic rocks in Nabi Musa fossil mud volcano. Russian Geology and Geophysics, 53, 745762.CrossRefGoogle Scholar
Sokol, E.V., Gaskova, O.L., Kozmenko, O.A., Kokh, S.N., Vapnik, E.A., Novikova, S.A. and Nigmatulina, E.N. (2014 a) Clastic dikes of the Hatrurim basin (western flank of the Dead Sea) as natural analogues of alkaline concretes: Mineralogy, solution chemistry, and durability. Doklady of Earth Sciences, 459, 14361441.CrossRefGoogle Scholar
Sokol, E.V., Kokh, S.N., Vapnik, Y., Thiery, V. and Korzhova, S.A. (2014 b) Natural analogs of belite sulfoaluminate cement clinkers from Negev Desert, Israel. American Mineralogist, 99, 14711487.CrossRefGoogle Scholar
Sokol, E., Kozmenko, O., Smirnov, S., Sokol, I., Novikova, S., Tomilenko, A., Kokh, S., Ryazanova, T., Reutsky, V., Bul'bak, T., Vapnik, Y. and Deyak, M. (2014 c) Geochemical assessment of hydrocarbon migration phenomena: Case studies from the south-western margin of the Dead Sea Basin. Journal of Asian Earth Sciences, 93, 211228.CrossRefGoogle Scholar
Sokol, E.V., Seryotkin, Yu.V., Kokh, S.N., Vapnik, Ye., Nigmatulina, E.N., Goryainov, S.V., Belogub, E.V. and Sharygin, V.V. (2015) Flamite (Ca,Na,K)2(Si,P)O4, a new mineral from the ultrahigh-temperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel. Mineralogical Magazine, 79, 583596.CrossRefGoogle Scholar
Techer, I., Khoury, H.N., Salameh, E., Rassineux, F., Claude, C., Clauer, N., Pagel, M., Lancelot, J., Hamelin, B. and Jacquot, E. (2006) Propagation of high-alkaline fluids in an argillaceous formation: Case study of the Khushaym Matruk natural analogue (Central Jordan). Journal of Geochemical Exploration, 90, 5367.CrossRefGoogle Scholar
Tucek, J., Machala, L., Ono, S., Namai, A., Yoshikiyo, M., Imoto, K., Tokoro, H., Ohkoshi, S. and Zboril, R. (2015) Zeta-Fe2O3 – A new stable polymorph in iron(III) oxide family. Scientific Reports, 5, 15091.CrossRefGoogle ScholarPubMed
Ulianov, A., Kalt, A. and Pettke, T. (2005) Hibonite, Ca(Al,Cr,Ti,Si,Mg, Fe2+)12O19, in granulite xenoliths from the Chyulu Hills volcanic field, Kenya. European Journal of Mineralogy, 17, 357366.CrossRefGoogle Scholar
Vapnik, Ye., Sokol, E., Murashko, M. and Sharygin, V. (2006) The enigma of Hatrurim. Mineralogical Almanac, 10, 6977.Google Scholar
Vapnik, Y., Sharygin, V.V., Sokol, E.V. and Shagam, R. (2007) Paralavas in combustion metamorphic complex at the Hatrurim Basin, Israel. Pp. 133153 in: Geology of Coal Fires: Case Studies from Around the World (Stracher, G., editor). GSA Review in Engineering Geology, XVIII.Google Scholar
Wang, H.-W., Anovitz, L.M., Burg, A., Cole, D.R., Allard, L.F., Jackson, A.J., Stack, A.G. and Rother, G. (2013) Multi-scale characterization of pore evolution in a combustion metamorphic complex, Hatrurim basin, Israel: Combining (ultra) small-angle neutron scattering and image analysis. Geochimica et Cosmochimica Acta, 121, 339362.CrossRefGoogle Scholar
Xu, H., Lee, S. and Xu, H. (2017) Luogufengite: A new nano-mineral of Fe2O3 polymorph with giant coercive field. American Mineralogist, 102, 711719.CrossRefGoogle Scholar
Zateeva, S.N., Sokol, E.V. and Sharygin, V.V. (2007) Specificity of pyrometamorphic minerals of the ellestadite group. Geology of Ore Deposits, 49, 792805.CrossRefGoogle Scholar
Zboril, R., Mashlan, M., Krausova, D. and Pikal, P. (1999) Cubic β-Fe2O3 as the product of the thermal decomposition of Fe2(SO4)3. Hyperfine Interactions, 120, 497501.CrossRefGoogle Scholar
Zeigler, M. (2001) Late Permian to Holocene paleofacies evolution of the Arabian plate and its hydrocarbon occurrences. GeoArabia, 6, 445504.Google Scholar

Sharygin supplementary material

Sharygin supplementary material 1

PDF 5 MB

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 24
Total number of PDF views: 133 *
View data table for this chart

* Views captured on Cambridge Core between 02nd July 2018 - 7th March 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

A hibonite-spinel-corundum-hematite assemblage in plagioclase-clinopyroxene pyrometamorphic rocks, Hatrurim Basin, Israel: mineral chemistry, genesis and formation temperatures
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

A hibonite-spinel-corundum-hematite assemblage in plagioclase-clinopyroxene pyrometamorphic rocks, Hatrurim Basin, Israel: mineral chemistry, genesis and formation temperatures
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

A hibonite-spinel-corundum-hematite assemblage in plagioclase-clinopyroxene pyrometamorphic rocks, Hatrurim Basin, Israel: mineral chemistry, genesis and formation temperatures
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *