Skip to main content Accessibility help
×
Home

Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahightemperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel

Published online by Cambridge University Press:  02 January 2018

E. V. Sokol
Affiliation:
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 3 Koptug Avenue, Novosibirsk, 630090, Russia
Y. V. Seryotkin
Affiliation:
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 3 Koptug Avenue, Novosibirsk, 630090, Russia Novosibirsk State University, 2 Pirogov Street, Novosibirsk, 630090, Russia
S. N. Kokh
Affiliation:
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 3 Koptug Avenue, Novosibirsk, 630090, Russia
Ye. Vapnik
Affiliation:
Department of Geological and Environmental Sciences, Ben-Gurion University of the Negev, POB 653, Beer-Sheva 84105, Israel
E. N. Nigmatulina
Affiliation:
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 3 Koptug Avenue, Novosibirsk, 630090, Russia
S. V. Goryainov
Affiliation:
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 3 Koptug Avenue, Novosibirsk, 630090, Russia
E. V. Belogub
Affiliation:
Institute of Mineralogy UrB RAS, Miass, 456317, Russia
V. V. Sharygin
Affiliation:
V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of Russian Academy of Sciences, 3 Koptug Avenue, Novosibirsk, 630090, Russia Novosibirsk State University, 2 Pirogov Street, Novosibirsk, 630090, Russia
Corresponding
E-mail address:

Abstract

Flamite (Ca,Na,K)2(Si,P)O4 (P63; a = 43.3726(18), c = 6.8270(4) Å; V = 11122.2(9) Å3), a natural analogue of the P,Na,K-doped high-temperature α-Ca2SiO4 modification, is a new mineral from Ca- and Al-rich paralava, an ultrahigh-temperature combustion metamorphic melt rock. The type locality is situated in the southern Hatrurim Basin, the Negev Desert, Israel. Flamite occurs as regular lamellar intergrowths with partially hydrated larnite, together with rock-forming gehlenite, rankinite and Ti-rich andradite, minor ferrian perovskite, magnesioferrite, hematite, and retrograde ettringite and calcium silicate hydrates. The mineral is greyish to yellowish, transparent with a vitreous lustre, non-fluorescent under ultraviolet light and shows no parting or cleavage; Mohs hardness is 5–5½; calculated density is 3.264 g cm–3. The empirical formula of holotype flamite (mean of 21 analyses) is (Ca1.82Na0.09K0.06(Mg,Fe,Sr,Ba)0.02)Σ1.99(Si0.82P0.18)Σ1.00O4. The strongest lines in the powder X-ray diffraction pattern are [d, Å (I obs )]: 2.713(100), 2.765(44), 2.759(42), 1.762(32), 2.518(29), 2.402(23), 2.897(19), 1.967(18), 2.220(15), 1.813(15). The strongest bands in the Raman spectrum are 170, 260, 520, 538, 850, 863, 885, 952 and 1003 cm–1.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2015

Access options

Get access to the full version of this content by using one of the access options below.

References

Bentor, Y.K. and Vroman, A. (1960) The Geological Map of Israel 1:100000, Sheet 16-Mount Sedom (with explanatory note). Geological Survey of Israel, Jerusalem. Bridge, T.E. (1966) Bredigite, larnite and g-dicalcium silicates from Marble Canyon. American Mineralogist, 51, 17661774.Google Scholar
Britvin, S.N., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2013) Murashkoite, IMA 2012-071. CNMNC Newsletter No. 15, February 2013, page 8; Mineralogical Magazine, 77, 112.Google Scholar
Britvin, S.N., Murashko, M., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2014a) Negevite, IMA 2013-104. CNMNC Newsletter No. 19, February 2014, page 166; Mineralogical Magazine, 78, 165170.Google Scholar
Britvin, S.N., Murashko, M., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2014b) Halamishite, IMA 2013-105. CNMNC Newsletter No. 19, February 2014, page 167; Mineralogical Magazine, 78, 165170.Google Scholar
Britvin, S.N., Murashko, M., Vapnik, Y., Polekhovsky, Y.S. and Krivovichev, S.V. (2014c) Zuktamrurite, IMA 2013-107. CNMNC Newsletter No. 19, February 2014, page 167; Mineralogical Magazine, 78, 165170.Google Scholar
Burg, A., Starinsky, A., Bartov, Y. and Kolodny, Y. (1992) Geology of the Hatrurim Formation (“Mottled Zone”) in the Hatrurim basin. Israel Journal of Earth Sciences, 40, 107124.Google Scholar
Campbell, D.H. (1999) Microscopical Examination and Interpretation of Portland Cement and Clinker. 2nd edition. Portland Cement Association, Skokie, Illinois, USA.Google Scholar
Canberra Industries Inc (2002) Model S506 Interactive Peak Fit, User’s Manual. Canberra Industries Inc, Canberra.Google Scholar
Chesnokov, B., Kotrly, M. and Nisanbajev, T. (1998) Brennende Abraumhalden und Aufschlüsse im Tscheljabinsker Kohlenbecken-eine reiche Mineralienküche. Mineralien-Welt, 9(3), 5463.Google Scholar
Chopelas, A. (1991) Single crystal Raman spectra of forsterite, fayalite and monticellite. American Mineralogist, 76, 11011109.Google Scholar
Deer, W.A., Howie, R.A. and Zussman, J. (1986) Rock-Forming Minerals. 2nd edition. Longmans, London and New York, pp. 248255.Google Scholar
Fix, W., Heymann, H. and Heinke, R. (1969) Subsolidus relations in the system 2CaO·SiO2.AlO·P2O5. Journal of the American Ceramic Society-Discussion and Notes, 52, 346347.CrossRefGoogle Scholar
Fleuscher, M., Cabri, L.J. Chao, G.Y. and Pabst, A. (1978) New mineral names. American Mineralogist, 63, 424427.Google Scholar
Fukuda, K. (2001) Recent progress in crystal chemistry of belite: intracrystalline microtextures induced by phase transformations and application of remelting reaction to improvement of hydration reactivity. Journal of the Ceramic Society of Japan, 109, 4348.CrossRefGoogle Scholar
Fukuda, K. and Maki, I. (1989) Orientation of b-Ca2SiO4 solid solution lamellae formed in the host aphase. Cement and Concrete Research, 19, 913918.CrossRefGoogle Scholar
Heller, L. and Taylor, H.F.W. (1956) Crystallographic Data for the Calcium Silicates. HMSO, London.Google Scholar
Galuskin, E.V., Galuskina, I.O., Pakhomova, A., Armbruster, T., Vapnik, Y., Dzierżanowski, P. and Murashko, M. (2013a) Aradite, IMA 2013-047. CNMNC Newsletter No. 17, October 2013, p. 3001; Mineralogical Magazine, 77, 29973005.Google Scholar
Galuskin, E.V., Gfeller, F., Armbruster, T., Sharygin, V.V., Galuskina, I.O., Krivovichev, S.V., Vapnik, Y., Murashko, M., Dzierżanowski, P. and Wirth, R. (2013b) Fluorkyuygenite, IMA 2013-043. CNMNC Newsletter No. 17, October 2013, page 3000; Mineralogical Magazine, 77, 29973005.Google Scholar
Galuskin, E.V., Gfeller, F., Galuskina, I.O., Armbruster, T., Vapnik, Y., Włodyka, R., Dzierżanowski, P. and Murashko, M. (2013c) Zadovite, IMA 2013-031. CNMNC Newsletter No. 16, August 2013, page 2708; Mineralogical Magazine, 77, 26952709.Google Scholar
Galuskin, E.V., Kusz, J., Gfeller, F., Galuskina, I.O., Vapnik, Y., Dulski, M. and Dzierżanowski, P. (2014) Silicocarnotite, IMA 2013-139. CNMNC Newsletter No. 20, June 2014, p. 553; Mineralogical Magazine, 78, 549558.Google Scholar
Galuskina, I.O., Vapnik, Y., Prusik, K., Dzierżanowski, P., Murashko, M. and Galuskin, E.V. (2013) Gurimite, IMA 2013-032. CNMNC Newsletter No. 16, August 2013, page 2708; Mineralogical Magazine, 77, 26952709.Google Scholar
Goryainov, S.V., Krylov, A.S., Pan, Y., Madyukov, I.A., Smirnov, M.B. and Vtyurin, A.N. (2012) Raman investigation of hydrostatic and nonhydrostatic compressions of OH-and F-apophyllites up to 8 GPa. Journal of Raman Spectroscopy, 43, 439447.CrossRefGoogle Scholar
Goryainov, S.V., Likhacheva, A.Y., Rashchenko, S.V., Shubin, A.S., Afanasiev, V.P. and Pokhilenko, N.P. (2014) Raman identification of lonsdaleite in Popigai impactites. Journal of Raman Spectroscopy, 45, 305313.CrossRefGoogle Scholar
Grapes, R. (2011) Pyrometamorphism. 2nd edition. Springer, Berlin. Gross, S. (1977) The mineralogy of the Hatrurim Formation, Israel. Geological Survey of Israel Bulletin, 70. Gross, S. (1980) Bentorite. A new mineral from the Hatrurim Area, west of the Dead Sea, Israel. Israel Journal of Earth Sciences, 29, 8184.Google Scholar
Gross, S. (1984) Occurrence of ye’elimite and ellestadite in an unusual cobble from the “pseudo-conglomerate” of the Hatrurim Basin, Israel. Geological Survey of Israel, Current Research 1983-84. 14.Google Scholar
Gross, S. and Heller, L. (1963) A natural occurrence of bayerite. Mineralogical Magazine, 32, 723724.CrossRefGoogle Scholar
Gobechiya, E.R., Yamnova, N.A., Zadov, A.E. and Gazeev, V.M. (2008) Calcio-olivine g-Ca2SiO4: I. Rietveld refinement of the crystal structure. Crystallography Reports, 53, 404408.CrossRefGoogle Scholar
McKeown, D.A., Bell, M.I. and Caracas, R. (2010) Theoretical determination of the Raman spectra of single-crystal forsterite (Mg2SiO4). American Mineralogist, 95, 980986.CrossRefGoogle Scholar
Mills, S.J., Hatert, F., Nickel, E.H. and Ferraris, G. (2009) The standardisation of mineral group hierarchies: application to recent nomenclature proposals. European Journal of Mineralogy, 21, 10731080.CrossRefGoogle Scholar
Mumme, W.G., Hill, R.J., Bushnell, Wye G. and Segnit, E.R. (1995) Rietveld crystal structure refinements, crystal chemistry and calculated powder diffraction data for the polymorphs of dicalcium silicate and related phases. Neues Jahrbuch für Mineralogie, Abhandlungen, 169, 3568.Google Scholar
Murashko, M.N., Chukanov, N.V., Mukhanova, A.A., Vapnik, E., Britvin, S.N., Krivovichev, S.V., Polekhovsky, Y.S. and Ivakin, Yu.D. (2011) Barioferrite BaFe+3 12O19 a new magnetoplumbitegroup mineral from Hatrurim Formation, Israel. Geology of Ore Deposits, 53, 558563.CrossRefGoogle Scholar
Oxford Diffraction (2008) CrysAlis RED (ver. 1.171.35.15). Oxford Diffraction, Abingdon, Oxfordshire, England.Google Scholar
Piriou, B. and McMillan, P. (1983) The high-frequency vibrational spectra of vitreous and crystalline orthosilicates. American Mineralogist, 68, 426443.Google Scholar
Reverdatto, V.V. (1973) The Facies of Contact Metamorphism. Australian National University, Canberra. Seryotkin, Y.V., Sokol, E.V. and Kokh, S.N. (2012) Natural pseudowollastonite: crystal structure, associated minerals, and geological context. Lithos, 133-135. 7590.Google Scholar
Sharygin, V.V., Vapnik, Y., Sokol, E.V., Kamenetsky, V.S. and Shagam, R. (2006) Melt inclusions in minerals of schorlomite-rich veins of the Hatrurim Basin, Israel: composition and homogenization temperatures. ACROFI I Program with Abstracts, 2006, pp. 189192.Google Scholar
Sharygin, V.V., Sokol, E.V. and Vapnik, Y. (2008) Minerals of the pseudobinary perovskite-brownmillerite series from combustion metamorphic larnite rocks of the Hatrurim Formation (Israel). Russian Geology and Geophysics, 49, 709726.CrossRefGoogle Scholar
Sharygin, V.V., Lazic, B., Armbruster, T.M., Murashko, M.N., Wirth, R., Galuskina, I.O., Galuskin, E.V., Vapnik, Y., Britvin, S.N. and Logvinova, A.M. (2013) Shulamitite Ca3TiFe3+AlO8-a new perovskite-related mineral from Hatrurim Basin, Israel. European Journal of Mineralogy, 25, 97111.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112122.CrossRefGoogle Scholar
Sokol, E.V., Novikov, I.S., Zateeva, S.N., Sharygin, V.V. and Vapnik, Y. (2008) Pyrometamorphic rocks of the spurrite-merwinite facies as indicators of hydrocarbon discharge zones (the Hatrurim Formation, Israel). Doklady Earth Sciences, 420, 608614.CrossRefGoogle Scholar
Sokol, E., Novikov, I., Zateeva, S., Vapnik, Y., Shagam, R. and Kozmenko, O. (2010) Combustion metamorphic rocks as indicators of fossil mud volcanism: new implications for the origin of the Mottled Zone, Dead Sea rift area. Basin Research, 22, 414438.CrossRefGoogle Scholar
Sokol, E.V., Kokh, S.N., Vapnik, Y., Thiéry, V. and Korzhova, S. (2014) Natural analogues of belite sulfoaluminate cement clinkers from Negev desert, Israel. American Mineralogist, 99, 14711487.CrossRefGoogle Scholar
Sugiyama, K., Kato, Y. and Mikouch, T. (2010) Structure of nagelschmidtite Ca7Si2P2O16. CD of Abstracts, 20th General Meeting of the IMA, Budapest, pp. 725.Google Scholar
Taylor, H.F.W. (1997) Cement Chemistry, 2nd edition. Tomas Telford Services, London.Google Scholar
Vapnik, Y., Sharygin, V.V., Sokol, E.V. and Shagam, R. (2007) Paralavas in a combustion metamorphic complex: Hatrurim Basin, Israel. Reviews in Engineering Geology, 18, 121.Google Scholar
Weber, D. and Bischoff, A. (1994) Grossite (CaAl4O7)-a rare phase in terrestial rocks and meteorites. European Journal of Mineralogy, 6, 591594.CrossRefGoogle Scholar
Whitney, D.L. and Evans, B.W. (2010) Abbreviations for names of rock-forming minerals. American Mineralogist, 95, 185187.CrossRefGoogle Scholar
Yamnova, N.A., Zubkova, N.V., Eremin, N.N., Zadov, A.E. and Gazeev, V.M. (2011) Crystal structure of larnite b-Ca2SiO4 and specific features of polymorphic transitions in dicalcium orthosilicate. Crystallography Reports, 56, 210220.CrossRefGoogle Scholar
Zadov, A.E., Gazeev, V.M., Pertsev, N.N., Gurbanov, A.G., Gobechiya, E.R., Yamnova, N.A. and Chukanov, N.V. (2009) Calcioolivine, gamma-Ca2SiO4, an old and New Mineral species. Geology of Ore Deposits, 51, 741749.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 18 *
View data table for this chart

* Views captured on Cambridge Core between 02nd January 2018 - 18th January 2021. This data will be updated every 24 hours.

Hostname: page-component-77fc7d77f9-95hzn Total loading time: 0.719 Render date: 2021-01-18T16:07:06.362Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags last update: Mon Jan 18 2021 15:56:02 GMT+0000 (Coordinated Universal Time) Feature Flags: { "metrics": true, "metricsAbstractViews": false, "peerReview": true, "crossMark": true, "comments": true, "relatedCommentaries": true, "subject": true, "clr": true, "languageSwitch": true, "figures": false, "newCiteModal": false, "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahightemperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahightemperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Flamite, (Ca,Na,K)2(Si,P)O4, a new mineral from ultrahightemperature combustion metamorphic rocks, Hatrurim Basin, Negev Desert, Israel
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *