Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-d5zgf Total loading time: 0.216 Render date: 2021-02-28T14:08:06.394Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

The crystal chemistry of elsmoreite from the Hemerdon (Drakelands) mine, UK: hydrokenoelsmoreite-3C and hydrokenoelsmoreite-6R

Published online by Cambridge University Press:  02 January 2018

Stuart J. Mills
Affiliation:
Geosciences, Museum Victoria, GPO Box 666, Melbourne, Victoria 3001, Australia
Andrew G. Christy
Affiliation:
Department of Applied Mathematics, Research School of Physics and Engineering, Australian National University, Canberra, ACT 2601, Australia
Mike S. Rumsey
Affiliation:
Earth and Planetary Mineralogy Division, Department of Earth Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK
John Spratt
Affiliation:
Core Research Laboratories, Facilities Department, Natural History Museum, Cromwell Road, London SW7 5BD, UK
Corresponding
E-mail address:

Abstract

A crystallographic and chemical study of two 'elsmoreite' samples (previously described as 'ferritungstite') from the Hemerdon mine (now known as the Drakelands mine), Devon, United Kingdom has shown them to be two different polytypes of hydrokenoelsmoreite. Hydrokenoelsmoreite-3C(HKE-3C) crystallizes in space group , with the unit-cell parameter a = 10.3065(3) Å. Hydrokenoelsmoreite-6R (HKE-6R) crystallizes in space group , with the unit-cell parameters a = 7.2882(2) Å and c = 35.7056(14)Å. Chemical analyses showed that both polytypes have Na and Fe/Al substitution giving the formulae: (Na0.28Ca0.04K0.02(H2O)0.201.46)∑2.00(W1.47Fe3+ 0.32Al0.21As5+ 0.01)∑2.00[O4.79(OH)1.21]∑6.00·(H2O)(3C) and (Na0.24Ca0.04K0.03(H2O)0.631.06)∑2.00(W1.42Fe3+ 0.49Al0.08As5+ 0.01)∑2.00[O4.65(OH)1.35]∑6.00·(H2O)(6R). The doubling of the unit cell in the 6R phase is due to ordering of Na and ( ,H2O) in the A site; no long-range ordering is observed between W and Fe/Al in the B site.

Type
Research Article
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2016

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Current address: Queensland Museum, 122 Gerler Road, Hendra, Queensland 4011, and School of Earth Sciences, University of Queensland, St Lucia, Queensland 4072, Australia

References

Andrade, M.B., Yang, H., Atencio, D., Downs, R.T., Chukanov, N.V., Lemée-Cailleau, M.-H., Persiano, A.I.C., Goeta, A.E. and Ellena, J. (2016) Hydroxycalciomicrolite, Ca1. 5Ta2O6(OH), a new member of the microlite group from Volta Grande pegmatite, Nazareno, Minas Gerais, Brazil. Mineralogical Magazine, 81, (in press) https://doi. org/10.1180/minmag.2016.080.11.Google Scholar
Atencio, D. (2016) Parabariomicrolite discredited as identical to hydrokenomicrolite-3R. Mineralogical Magazine, 80, 923924.CrossRefGoogle Scholar
Atencio, D., Andrade, M.B., Christy, A.G., Gieré, R. and Kartashov, P.M. (2010) The pyrochlore supergroup of minerals: nomenclature. The Canadian Mineralogist, 48, 673698.CrossRefGoogle Scholar
Birch, W.D., Grey, I.E., Mills, S.J., Bougerol, C., Pring, A. and Ansermet, S. (2007) Pittongite: a new secondary mineral from Pittong, Victoria, Australia. The Canadian Mineralogist, 45, 857—864.Google Scholar
Bruker (2003) SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Google Scholar
Cameron, J. (1951) The geology of Hemerdon wolfram mine, Devon. Transactions of the Institute of Mining and Metallurgy, 61, 1—14.Google Scholar
Ercit, T.S. and Robinson, G.W. (1994) A refinement of the structure of ferritungstite from Kalzas Mountain, Yukon, and observations on the tungsten pyrochlores. The Canadian Mineralogist, 32, 567574.Google Scholar
Ercit, T.S., Hawthorne, F.C. and Černý, P. (1986) Parabariomicrolite, a new species and its structural relationship to the pyrochlore group. The Canadian Mineralogist, 24, 655—663.Google Scholar
Ercit, T.S.,Černý, P. and Hawthorne, F.C. (1993) Cesstibtantite - a geologic introduction to the inverse pyrochlores. Mineralogy and Petrology, 48, 235255.CrossRefGoogle Scholar
Grey, I.E., Birch, W.D., Bougerol, C. and Mills, S.J. (2006) Unit-cell intergrowth of pyrochlore and hexagonal tungsten bronze structures in secondary tungsten minerals. Journal of Solid State Chemistry, 179, 38603869.CrossRefGoogle Scholar
Grey, I.E., Mumme, W.G., Vanderah, T.A., Roth, R.S. and Bougerol, C. (2007) Chemical twinning of the pyrochlore structure in the system Bi2O3—Fe2O3—Nb2O5. Journal of Solid State Chemistry, 180, 158166.CrossRefGoogle Scholar
Grey, I.E., Mumme, W.G. and MacRae, C.M. (2013) Lead-bearing phyllotungstite from the Clara mine, Germany with an ordered pyrochlore-hexagonal tungsten bronze intergrowth structure. Mineralogical Magazine, 77, 5767.CrossRefGoogle Scholar
Günter, J.R., Amberg, M. and Schmalle, H. (1989) Direct synthesis and single crystal structure determination of cubic pyrochlore-type tungsten trioxide hemihydrate, WCy0.5H2O. Materials Research Bulletin, 24, 289292.CrossRefGoogle Scholar
Loopstra, B.O. and Goubitz, K. (1986) The structures of four caesium tellurates. Acta Crystallographica, C42, 520523.Google Scholar
Mills, S.J., Christy, A.G. and Kampf, A.R. (2016) A review of the structural architecture of tellurium oxycom-pounds. Mineralogical Magazine, 80, 415545.Google Scholar
Mumme, W.G., Grey, I.E., Birch, W.D., Pring, A., Bougerol, C. and Wilson, N.C. (2010) Coulsellite, CaNa3AlMg3F14, a rhombohedral pyrochlore with 1:3 ordering in both A and B sites, from the Cleveland Mine, Tasmania, Australia. American Mineralogist, 95, 736740.CrossRefGoogle Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica,A64, 112—122.Google Scholar
Walenta, K. (1984) Phyllotungstit, ein neues sekundares Wolframmineral aus der Grube Clara im mittleren Schwarzwald. Neues Jahrbuch für Mineralogie, Monatshefe, 12, 529535.Google Scholar
Williams, P.A., Leverett, P., Sharpe, J.L. and Colchester, D.M. (2005) Elsmoreite, cubic WO3.0.5H2O, a new mineral species from Elsmore, New South Wales. The Canadian Mineralogist, 43, 1061—1064.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 41 *
View data table for this chart

* Views captured on Cambridge Core between 02nd January 2018 - 28th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

The crystal chemistry of elsmoreite from the Hemerdon (Drakelands) mine, UK: hydrokenoelsmoreite-3C and hydrokenoelsmoreite-6R
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

The crystal chemistry of elsmoreite from the Hemerdon (Drakelands) mine, UK: hydrokenoelsmoreite-3C and hydrokenoelsmoreite-6R
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

The crystal chemistry of elsmoreite from the Hemerdon (Drakelands) mine, UK: hydrokenoelsmoreite-3C and hydrokenoelsmoreite-6R
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *