Skip to main content Accessibility help
×
Home

Chlorine content and crystal chemistry of dellaite from the Birkhin gabbro massif, Eastern Siberia, Russia

Published online by Cambridge University Press:  05 July 2018

T. Armbruster
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
B. Lazic
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
F. Gfeller
Affiliation:
Mineralogical Crystallography, Institute of Geological Sciences, University of Bern, Freiestr. 3, CH-3012 Bern, Switzerland
E. V. Galuskin
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
I. O. Galuskina
Affiliation:
Faculty of Earth Sciences, Department of Geochemistry, Mineralogy and Petrography, University of Silesia, Będzińska 60, 41-200 Sosnowiec, Poland
V. B. Savelyeva
Affiliation:
Institute of the Earth Crust SB RAS, Lermontov st. 128, 664033 Irkutsk, Russia
A. E. Zadov
Affiliation:
OOO Science Research Center NEOCHEM, Dmitrovskoye Highway 100/2, 127238 Moscow, Russia
N. N. Pertsev
Affiliation:
Institute of Geology of Ore Deposits, Geochemistry, Mineralogy and Petrography (IGEM) RAS, Staromonetny 35, Moscow, Russia
P. Dzierżanowski
Affiliation:
Institute of Geochemistry, Mineralogy and Petrology, Warsaw University, al. Żwirki i Wigury 93, 02-089 Warszawa, Poland
Corresponding
E-mail address:

Abstract

Dellaite crystals of close to end-member composition, Ca6(Si2O7)(SiO4)(OH)2, and with ∼1.5 wt.% Cl. yielding Ca6(Si2O7)(SiO4)(OH)1.75Cl0.25 have been found in skarns within the gabbroid rocks of the Birkhin complex (Eastern Siberia, Russia). The greatest Cl content analysed in a dellaite domain in this skarn is 5.2 wt.% Cl corresponding to 0.8 Cl p.f.u. Dellaite occurs in altered merwmite-larnite-bredigite-gehlenite skarns and also in calcio-olivine skarns with residual larnite. The crystal structures of Cl-free and Cl-bearing (∼1.5 wt.% Cl) dellaite have been refined, including hydrogen positions, from single-crystal X-ray data to R1 = 3.7 and 3.8%, respectively. In addition, both dellaite varieties were studied by Raman spectroscopy indicating stronger hydrogen bonds for the Cl-bearing sample, which agrees with the structural data. Cl is strongly selective and enriches at one (O6) of the two OH positions allowing for the formation of a stronger hydrogen bond O8—H8…C16 compared to O8—H8…O6. Raman spectra of the domain with ∼0.8 Cl p.f.u. confirm the general enhancement of a low-frequency band in the OH range suggesting the dominance of the O—H…Cl hydrogen bond systems.

Dellaite and killalaite, Ca3.2(H0.6Si2O7)(OH), have related modular structures, differentiated only by the Si2O7 units in killalaite and alternating Si2O7 and SiO4 units in dellaite. The similarity in cell dimensions and chemical composition suggests that trabzonite, Ca4Si3Oi0-2H2O, with Si3Oi0 trimers also belongs to the same family of structures.

Type
CNMNC Newsletter 8
Copyright
Copyright © The Mineralogical Society of Great Britain and Ireland 2011

Access options

Get access to the full version of this content by using one of the access options below.

References

Agrell, S.O. (1965) Polythermal metamorphism of limestones at Ki l choan, Ardnamurchan. Mineralogical Magazine, 34, 1–15.Google Scholar
Brown, I.D. and Altermatt, D. (1985) Bond-valence parameters obtained from a systematic analysis of the Inorganic Crystal Structure Database. Acta Crystallographica, B41, 244–247.CrossRefGoogle Scholar
Bruker, (1999) SMART and SAINT-Plus. Versions 6.01. Bruker AXS Inc.,Madison, Wisconsin, USA.Google Scholar
Dent-Glasser, L. and Roy, D.M. (1959) Further studies on 6CaO·3SiO2·H2O. American Mineralogist, 44, 447–451.Google Scholar
Dent-Glasser, L.S., Funk, H., Hilmer, W. and Taylor, H.F.W. (1961) The identity of some dicalcium silicate hydrates. Journal of Applied Chemistry, 11, 186–190.Google Scholar
Flint, E.P., McMurdie, H.F. and Wells, L.S. (1938) Formation of hydrated calcium silicates at elevated temperatures and pressures. Journal of Research, National Bureau of Standards, 21, 617–638.CrossRefGoogle Scholar
Funk, H. (1958) Chemische Untersuchungen von Silicaten. XXII. Über Produkte der Wassereinwirkung auf verschiedene Formen des Ca2SiO4 bei 120° bis 350° C und ihre Bildungsbedingungen. Zeitschrift für anorganische und allgemeine Chemie, 297, 103–120.CrossRefGoogle Scholar
Ganiev, R.M., Ilyukhin, V.V. and Belov, N.V. (1970) Crystal structure of cement phase Y = Ca6[Si2O7][SiO4](OH)2 . Doklady Akademii Nauk SSSR, 190, 831–834.(in Russian).Google Scholar
Garbev, K., Gasharova, B., Beuchle, G., Kreisz, S. and Stemmermann, P. (2008) First observation of α-Ca2[SiO3(OH)](OH)-Ca6[Si2O7][SiO4](OH)2 phase transformation upon thermal treatment in air. Journal of the American Ceramic Society, 91, 263–271.Google Scholar
Howie, R.A. and Ilyukhin, V.V. (1977) Crystal structure of rustumite. Nature, 269, 231.CrossRefGoogle Scholar
Hu, X., Yanagisawa, K., Onda, A. and Kajiyoshi, K. (2006) Stability and phase relations of dicalcium silicate hydrate under hydrothermal conditions. Journal of the Ceramic Society of Japan, 114, 174–179.CrossRefGoogle Scholar
Jander, W. and Franke, B. (1941) Die Bildung von Calciumhydrosilikaten aus Calciumoxyd und Kieselsäuregel bei 300° und 350°C und hohen Drucken. III. Mitteilung über hydrothermale Reaktionen. Zeitschrift für anorganische und allgemeine Chemie, 247, 161–179.CrossRefGoogle Scholar
Kusachi, I., Henmi, C. and Henmi, K. (1984) The occurrences of killalaite and associated minerals from Kushiro-Uenotani outcrop, Tojo, Hiroshima. Koubutsu-Gakkai Kou’en-Youshi, 100 (in Japanese).Google Scholar
Lazic, B., Armbruster, T., Savelyeva, V.B., Zadov, A.E., Pertsev, N.N. and Dzierżanowski, P. (2011) Galuskinite, Ca7(SiO4)3(CO3), a new skarn mineral from the Birkhin gabbro massif, Eastern Siberia, Russia. Mineralogical Magazine, 75, in press.Google Scholar
Libowitzky, E. (1999) Correlation of O-H stretching frequencies and O-H···O hydrogen bond lengths in minerals. Monatshefte für Chemie, 130, 1047–1059.CrossRefGoogle Scholar
Nawaz, R. (1974) Killalaite, a new mineral from Co. Sligo, Ireland. Mineralogical Magazine, 39, 544–548.CrossRefGoogle Scholar
Nawaz, R. (1977) A second occurrence of killalaite. Mineralogical Magazine, 41, 546–548.CrossRefGoogle Scholar
Roy, D.M. (1958) Studies in the system CaO-Al2O3-SiO2-H2O IV; phase equilibria in the high-lime portion of the system CaO-SiO2-H2O. American Mineralogist, 43, 1009–1028.Google Scholar
Safronov, A.N., Nevsky, N.N., Ilyukhin, V.V. and Belov, N.V. (1981) The refinement of the crystal structure of the cement phase Y-C6S3H, Doklady Akademii Nauk SSSR, 256, 1387–1389 (in Russian).Google Scholar
Sarp, H. and Burri, G. (1986) Trabzonite Ca4Si3O10·2H2O a new hydrated silicate. Schweizerische Mineralogische Petrographische Mitteilungen, 66, 453.Google Scholar
Sarp, H., Deferne, J. and Sarman, E. (1982a) Second occurrence of killalaite in a skarn from the Guneyce-Ikizdere region (eastern Pontids, Turkey). Archives des Sciences Geneve, 35, 275–278.Google Scholar
Sarp, H., Deferne, J. and Sarman, E. (1982b) Metamorphisme polythermal de Güneyce-Ikizdere (Pontides Orientales, Turquie) et quelques precisions sur les conditions de formation de la defernite. Archives des Sciences Geneve, 35, 279–288.Google Scholar
Sheldrick, G.M. (1996) SADABS. University of Göttingen, Germany.Google Scholar
Sheldrick, G.M. (2008) A short history of SHELX. Acta Crystallographica, A64, 112–122.CrossRefGoogle Scholar
Shimazaki, H., Miyawaki, R., Yokoyama, K., Matsubara, S. and Bunno, M. (2008) Occurrence and new data of dellaite from the Akagane mine, Japan. Journal of Mineralogical and Petrological Sciences, 103, 385–389.CrossRefGoogle Scholar
Speakman, K., Taylor, H.F.W., Bennett, J.M. and Gard, J.A. (1967) Hydrothermal reactions of γ-dicalcium silicate. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 1052–1060.CrossRefGoogle Scholar
Takechi, Y., Kusachi, I., Nakamuta, Y. and Kase, K. (2000) Nickel-bearing djerfisherite in gehlenitespurrite skarn at Kushiro, Hiroshima Prefecture, Japan. Resource Geology, 50, 179–184.CrossRefGoogle Scholar
Taylor, H.F.W. (1977) The crystal structure of killalaite. Mineralogical Magazine, 41, 363–369.CrossRefGoogle Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 0
Total number of PDF views: 6 *
View data table for this chart

* Views captured on Cambridge Core between 05th July 2018 - 24th January 2021. This data will be updated every 24 hours.

Hostname: page-component-76cb886bbf-kdwz2 Total loading time: 0.297 Render date: 2021-01-24T02:03:07.841Z Query parameters: { "hasAccess": "0", "openAccess": "0", "isLogged": "0", "lang": "en" } Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false }

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Chlorine content and crystal chemistry of dellaite from the Birkhin gabbro massif, Eastern Siberia, Russia
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Chlorine content and crystal chemistry of dellaite from the Birkhin gabbro massif, Eastern Siberia, Russia
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Chlorine content and crystal chemistry of dellaite from the Birkhin gabbro massif, Eastern Siberia, Russia
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *