Skip to main content Accessibility help
×
Home
Hostname: page-component-559fc8cf4f-s65px Total loading time: 0.424 Render date: 2021-02-28T14:07:46.097Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "metricsAbstractViews": false, "figures": false, "newCiteModal": false, "newCitedByModal": true }

Bytízite, a new Cu-Sb selenide from Příbram, Czech Republic

Published online by Cambridge University Press:  28 February 2018

Pavel Škácha
Affiliation:
Mining muzeum Příbram, Hynka Kličky place 293, Příbram VI, 261 01, Czech Republic Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 – Horní Počernice, 193 00, Czech Republic
Jiří Sejkora
Affiliation:
Department of Mineralogy and Petrology, National Museum, Cirkusová 1740, Prague 9 – Horní Počernice, 193 00, Czech Republic
Jakub Plášil
Affiliation:
Institute of Physics ASCR, v.v.i., Na Slovance 1999/2, 18221 Praha 8, Czech Republic
Corresponding

Abstract

The new mineral bytízite was found in the dump of shaft No. 16, one of the mines in the Příbram uranium and base-metal district, central Bohemia, Czech Republic. Bytízite is associated with chaméanite, příbramite, giraudite, berzelianite, umangite, eskebornite, hakite, tetrahedrite, bukovite, crookesite and uraninite in a calcite-dominant gangue. The new mineral occurs as anhedral grains up to 40 µm, growing together in aggregates up to 300 µm across. Bytízite is steel-grey in colour and has a metallic lustre. Mohs hardness is ca. 2–3; the calculated density is 6.324 g cm–3. In reflected light bytízite is grey with a yellowish hue, yellowish and brownish. Bireflectance and pleochroism are weak. Anisotropy is strong with grey to brownish rotation tints. Internal reflections were not observed. The empirical formula, based on electron-microprobe analyses, is (Cu3.00Fe0.01Ag0.01)3.02(Sb0.97As0.06)1.03Se2.94. The ideal formula is Cu3SbSe3, which requires Cu 34.71, Sb 22.16 and Se 43.13, total 100.00 wt.%. Bytízite is orthorhombic, Pnma, a = 7.9594(12), b = 10.5830(14), c = 6.8240(11) Å, with V = 574.82(15) Å3 and Z = 4. The strongest reflections of the calculated powder X-ray diffraction pattern [d, Å (I)(hkl)] are: 3.73(37)(210), 3.27(62)(211), 2.867(40)(022), 2.698(100)(122) and 2.646(37)(040). According to the single-crystal X-ray diffraction data (Robs = 0.0437), bytízite is isostructural with synthetic Cu3SbSe3. The structure of bytízite contains two Cu, one Sb, and two Se sites (the latter is occupied both by Se and S atoms). In the structure of both synthetic Cu3SbSe3 and bytízite, there are groups of three cis-edge-sharing tetrahedra [Cu3Se8], which are interlinked to a 3D framework by SbSe3 groups. Bytízite is named after its type locality, the Bytíz deposit, near the village Bytíz.

Type
Article
Copyright
Copyright © Mineralogical Society of Great Britain and Ireland 2018 

Access options

Get access to the full version of this content by using one of the access options below.

Footnotes

Associate Editor: Andrew Christy

References

Anderson, E.B. (1987) Isotopic-geochronological investigation of the uranium mineralization of Czechoslovakia. Unpublished Czechoslovak Uranium Industry Report 1962–87.Google Scholar
Dymkov, J. (1985) Selenidy nasturan-karbonatnych žil. Pp. 153162 in: Paragenezis mineralov uranonosnych žil. Nedra, Moscow.Google Scholar
Ettler, V., Sejkora, J., Drahota, P., Litochleb, J., Pauliš, P., Zeman, J., Novák, M. and Pašava, J. (2010) Příbram and Kutná Hora mining districts – from historical mining to recent environmental impact. Pp. 123 in: Acta Mineralogica-petrographica, Field Guide Series 7. IMA 2010, Budapest.Google Scholar
Karup-Møller, S. and Makovicky, E. (1974) Skinnerite, a new sulfosalt from the Ilimaussaq Alkaline Intrusion, South Greenland. American Mineralogist, 59, 889895.Google Scholar
Kocman, V. and Nuffield, E.W. (1973) The crystal structure of wittichenite, Cu3BiS3. Acta Crystalographica, B29, 25282535.CrossRefGoogle Scholar
Kvaček, M. (1987) Mineralogicko – geochemická charakteristika selenidového zrudnění na uranových ložiskách Českého masivu. In: Mineralogia uránových a s nimi súvisiacích nerastných surovín. Sborník Spišská Nová Ves, 8995.Google Scholar
Laugier, J. and Bochu, B. (2003) CELREF: Unit Cell Refinement Program from Powder Diffraction Diagram. Laboratoires des Matériaux et du Génie Physique, Ecole Nationale Supériaux de Physique de Grenoble (INPG), Grenoble, France.Google Scholar
Litochleb, J., Černý, P., Litochlebová, E., Sejkora, J. and Šreinová, B. (2003) The deposits and occurrences of mineral raw materials in the Střední Brdy Mts. and the Brdy piedmont area (Central Bohemia). Bulletin mineralogicko – petrologického oddělení Národního muzea v Praze, 11, 5786.Google Scholar
Litochleb, J., Sejkora, J. and Šrein, V. (2004) Selenides from the Bytíz deposit (Příbram uranium and base-metal district). Bulletin mineralogicko – petrologického oddělení Národního muzea v Praze, 12, 113123.Google Scholar
Makovicky, E. and Balič-Žunič, T. (1995) The crystal structure of skinnerite, P21/c-Cu3SbS3, from powder data. The Canadian Mineralogist, 33, 655663.Google Scholar
Petříček, V., Dušek, M. and Palatinus, L. (2014) Crystallographic computing system Jana 2006: general features. Zeitschrift für Kristallographie, 229, 345352.Google Scholar
Pfitzner, A. (1994) Cu3SbS3: Zur Kristallstruktur und Polymorphie. Zeitschrift für anorganische und allgemeine Chemie, 620, 19921997.CrossRefGoogle Scholar
Pfitzner, A. (1995) Cu3SbSe3, Synthese und Kristallstruktur. Zeitschrift für anorganische und allgemeine Chemie, 621, 685688.CrossRefGoogle Scholar
Pouchou, J.L. and Pichoir, F. (1985) “PAP” (πρZ) procedure for improved quantitative microanalysis. Pp. 104106 in: Microbeam Analysis (Armstrong, J.T., editor). San Francisco Press, San Francisco, California, USA.Google Scholar
Rigaku, (2016) CrysAlis CCD and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, Oxfordshire, UK.Google Scholar
Růžička, J. (1986) Minerals of the Příbram uranium deposit. Komitét symposia Hornická Příbram ve vědě a technice, Příbram, 1244.Google Scholar
Sejkora, J. and Škácha, P. (2015 a) Selenides from the fluorite deposit Moldava, Krušné hory Mountains (Czech Republic). Bulletin mineralogicko – petrologického oddělení Národního muzea v Praze, 23, 229241.Google Scholar
Sejkora, J. and Škácha, P. (2015 b) The occurence of selenides at the deposit Běstvina, Železné hory Mountains (Czech Republic). Bulletin mineralogicko – petrologického oddělení Národního muzea v Praze, 23, 255260.Google Scholar
Sejkora, J., Makovicky, E., Topa, D., Putz, H., Zagler, G. and Plášil, J. (2011) Litochlebite, Ag2PbBi4Se8, a new selenide mineral species from Zálesí, Czech Republic: description and crystal-structure. The Canadian Mineralogist, 49, 639650.CrossRefGoogle Scholar
Sejkora, J., Plášil, J., Litochleb, J., Škácha, P. and Pavlíček, R. (2012) A selenide association with macroscopic umangite from the abandoned uranium deposit Zálesí, Rychlebské hory Mountains (Czech Republic). Bulletin mineralogicko – petrologického oddělení Národního muzea v Praze, 20, 187196.Google Scholar
Sejkora, J., Macek, I., Škácha, P., Pauliš, P., Plášil, J. and Toegel, V. (2014) An occurrence of Hg and Tl selenides at the abandoned uranium deposit Zálesí, Rychlebské hory Mountains (Czech Republic). Bulletin mineralogicko – petrologického oddělení Národního muzea v Praze, 22, 333345.Google Scholar
Sejkora, J., Škácha, P., Kopecký, S. sen., Kopecký, S. jun., Pauliš, P., Malíková, R. and Velebil, D. (2016) Se and Cu mineralization from Bílá Voda near Javorník (Czech Republic). Bulletin mineralogicko – petrologického oddělení Národního muzea v Praze, 24, 2, 161177.Google Scholar
Shields, G.P., Raithby, P.R., Allen, F.H. and Motherwell, W.D.S. (2000) The assignment and validation of metal oxidation states in the Cambridge Structural Database. Acta Crystalographica, B56, 455465.CrossRefGoogle Scholar
Simon, G. and Essene, E.J. (1996) Phase relations among selenides, sulphides, tellurides, and oxides: I. Thermodynamic properties and calculated equilibria. Economic Geology, 91, 11831208.CrossRefGoogle Scholar
Simon, G., Kesler, S.E. and Essene, E.J. (1997) Phase relations among selenides, sulphides, tellurides, and oxides: II. Applications to selenide-bearing ore deposits. Economic Geology, 92, 468484.CrossRefGoogle Scholar
Škácha, P. (2015) Role of the selenium in the late hydrothermal phase of the Příbram uranium region. Unpublished PhD Thesis, Charles University, Prague, Czech Republic, 235 p.Google Scholar
Škácha, P. and Sejkora, J. (2007) Arsenolamprite occurrence in the Příbram uranium and base-metal district. Bulletin mineralogicko – petrologického oddělení Národního muzea v Praze, 14–15, 131133.Google Scholar
Škácha, P., Sejkora, J., Litochleb, J. and Hofman, P. (2009) Cuprostibite occurrence in the Příbram uranium and base-metal district (shaft No. 16, Příbram - Háje), Czech Republic. Bulletin mineralogicko - petrologického oddělení Národního muzea v Praze, 17(1), 7378.Google Scholar
Škácha, P., Vlček, V., Sejkora, J., Plášil, J. and Goliáš, V. (2010): Compositional trends in hakite, possible discrepancies from ideal structure. Acta Mineralogica-petrographica, Abstract Series 6, 725.Google Scholar
Škácha, P., Buixaderas, E., Plášil, J., Sejkora, J., Goliáš, V. and Vlček, V. (2014) Permingeatite, Cu3SbSe4, from Příbram (Czech Republic): description and Raman spectroscopy investigations of the luzonite-subgroup of minerals. The Canadian Mineralogist, 52, 501511.CrossRefGoogle Scholar
Škácha, P., Plášil, J., Sejkora, J. and Goliáš, V. (2015) Sulphur-rich antimonselite, Sb2(Se,S)3 in the Se-bearing mineral association from the uranium and base metal ore district Příbram, Czech Republic. Journal of Geosciences, 60(1), 2329.CrossRefGoogle Scholar
Škácha, P., Palatinus, L., Sejkora, J., Plášil, J., Macek, I. and Goliáš, V. (2016) Hakite from Příbram, Czech Republic: Compositional variability, crystal structure and the role within the Se-mineralization. Mineralogical Magazine, 80(6), 115.CrossRefGoogle Scholar
Škácha, P., Sejkora, J. and Plášil, J. (2017) Příbramite, CuSbSe2, the Se-analogue of chalcostibite, a new mineral from Příbram, Czech Republic. European Journal of Mineralogy, 29, 653661.CrossRefGoogle Scholar
Žák, K. and Dobeš, P. (1991) Stable isotopes and fluid inclusions in hydrothermal deposits: the Příbram ore region. Rozpravy Československé akademie věd, Řada Matematických a Přírodních Věd, 101, 1109.Google Scholar

Full text views

Full text views reflects PDF downloads, PDFs sent to Google Drive, Dropbox and Kindle and HTML full text views.

Total number of HTML views: 7
Total number of PDF views: 41 *
View data table for this chart

* Views captured on Cambridge Core between 28th February 2018 - 28th February 2021. This data will be updated every 24 hours.

Send article to Kindle

To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Bytízite, a new Cu-Sb selenide from Příbram, Czech Republic
Available formats
×

Send article to Dropbox

To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

Bytízite, a new Cu-Sb selenide from Příbram, Czech Republic
Available formats
×

Send article to Google Drive

To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

Bytízite, a new Cu-Sb selenide from Příbram, Czech Republic
Available formats
×
×

Reply to: Submit a response


Your details


Conflicting interests

Do you have any conflicting interests? *