Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T14:22:55.621Z Has data issue: false hasContentIssue false

Programmable Array Microscopes

Published online by Cambridge University Press:  14 March 2018

Quentin Hanley*
Affiliation:
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
Rainer Heintzmann
Affiliation:
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
Donna Arndt-Jovin
Affiliation:
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
Thomas Jovin*
Affiliation:
Max Planck Institute for Biophysical Chemistry, Göttingen, Germany

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The programmable array microscope (PAM) is a powerful tool combining the capabilities of nearly all previously described optical sectioning techniques in a single microscope. Not only can the user create optical sections of threedimensional objects, but the PAM's unique adaptive optical strategy allows a user to select the best sectioning method for a particular sample or experimental need. The key to the PAM is a spatial light modulator (SLM). This device, when placed in the image plane of a microscope, can be used to create optical sectioning, generate spatial encoding masks, and/or define regions of interest.

Type
Research Article
Copyright
Copyright © Microscopy Society of America 2001

References

1. Hanley, Q. S., Verveer, P. J., Gemkow, M. J., Arndt-Jovin, D. and Jovin, T. M.. Microsc, J.. 196, 317 (1999).Google Scholar
2. Hanley, Q. S., Verveer, P. J. and Jovin, T. M.. Appl. Spectrosc. 52, 783 (1998).Google Scholar
3. Cha, S. D., Lin, P. C., Zhu, L. J., Sun, P. C. and Fainman, Y.. Appl. Opt. 39, 2605 (2000).Google Scholar
4. Hanley, Q. S., Verveer, P. J., Arndt-Jovin, D. J. and Jovin, T. M.. Microsc, J.. 197, 5 (2000).Google Scholar
5. Juskaitis, R., Wilson, T., Neil, M. A. A. and Kosubek, M.. Nature 383, 804 (1996).Google Scholar
6. Verveer, P. J., Haniey, Q. S., Verbeek, P. W., Van Vliet, L. J. and Jovin, T. M.. Microsc, J.. 189, 192 (1998).Google Scholar
7. Hanley, Q. S., Verveer, P. J. and Jovin, T. M.. Appl. Spectrosc. 53, 1 (1999).Google Scholar
8. Puppels, G. J., de Mul, F. F. M., Otto, C., Greve, J., Robert- Nicoud, M., Arndt-Jovin, D. J. and Jovin, T. M.. Nature 347, 301 (1990).CrossRefGoogle Scholar
9. Timlin, J. A., Carden, A., Morris, M. D., Bonadio, J. A., Hoffler, C. E., Kozloff, K. M. and Goldstein, S. A.. Biomed, J.. Opt. 4, 28 (1999).Google Scholar
10. Schaeberle, M. D., Morris, H. R., Turner, J. F. and Treado, P. J.. Anal. Chem. 5, 175A (1999).Google Scholar
11. Malik, Z., Buckwald, R. A., Talmi, A., Garini, Y. and Lipson, S. G.. Microsc, J.. 182, 133 (1996).Google Scholar