Skip to main content Accessibility help

Zinc-Containing Restorations Create Amorphous Biogenic Apatite at the Carious Dentin Interface: A X-Ray Diffraction (XRD) Crystal Lattice Analysis

  • Manuel Toledano (a1), Fátima S. Aguilera (a1), Modesto T. López-López (a2), Estrella Osorio (a1), Manuel Toledano-Osorio (a1) and Raquel Osorio (a1)...


The aim of this research was to assess the ability of amalgam restorations to induce amorphous mineral precipitation at the caries-affected dentin substrate. Sound and caries-affected dentin surfaces were subjected to both Zn-free and Zn-containing dental amalgam restorations. Specimens were submitted to thermocycling (100,000 cycles/5°C–55°C, 3 months). Dentin surfaces were studied by atomic force microscopy (nanoroughness), X-ray diffraction, field emission scanning electron microscopy, and energy-dispersive analysis, for physical and morphological surface characterization. Zn-containing amalgam placement reduced crystallinity, crystallite size, and grain size of calcium phosphate crystallites at the dentin surface. Both microstrain and nanoroughness were augmented in caries-affected dentin restored with Zn-containing amalgams. Caries-affected dentin showed the shortest mineral crystallites (11.04 nm), when Zn-containing amalgams were used for restorations, probably leading to a decrease of mechanical properties which might favor crack propagation and deformation. Sound dentin restored with Zn-free amalgams exhibited a substantial increase in length of grain particles (12.44 nm) embedded into dentin crystallites. Zn-containing amalgam placement creates dentin mineralization and the resultant mineral was amorphous in nature. Amorphous calcium phosphate provides a local ion-rich environment, which is considered favorable for in situ generation of prenucleation clusters, promotong further dentin remineralization.


Corresponding author

* Corresponding author.


Hide All
Agrawal, R., Nieto, A., Chen, H., Mora, M. & Agarwal, A. (2013). Nanoscale damping characteristics of boron nitride nanotubes and carbon nanotubes reinforced polymer composites. ACS Appl Mater Interfaces 5, 1205212057.
Barrére, F., Layrolle, P., van Blitterswijk, C.A. & de Groot, K. (1999). Biomimetic calcium phosphate coatings on Ti6AI4V: A crystal growth study of octacalcium phosphate and inhibition by Mg2+ and HCO3− . Bone 25, 107S111S.
Bertassoni, L.E., Habelitz, S., Kinney, J.H., Marshall, S.J. & Marshall, G.W. Jr. (2009). Biomechanical perspective on the remineralization of dentin. Caries Res 43, 7077.
Bigi, A., Boanini, E., Gazzano, M., Kojdecki, M.A. & Rubini, K. (2004). Microstructural investigation of HAp–polyelectrolyte composites. J Mater Chem 14, 274279.
Cochrane, N.J., Cai, F., Huq, N.L., Burrow, M.F. & Reynolds, E.C. (2010). New approaches to enhanced remineralization of tooth enamel. J Dent Res 89, 11871197.
Fujisaki, K., Todoh, M., Niida, A., Shibuya, R., Kitami, S. & Tadano, S. (2012). Orientation and deformation of mineral crystals in tooth surfaces. J Mech Behav Biomed Mater 10, 176182.
Fusayama, T. (1993). New Concepts in the Pathology and Treatment of Dental Caries. St. Louis, MO: Ishiyaku EuroAmerica Inc. pp. 1–21.
Gawda, H., Sekowski, L. & Trebacz, H. (2004). In vitro examination of human teeth using ultrasound and X-ray diffraction. Acta Bioeng Biomech 6, 4150.
Goel, V.K., Khera, S.C., Ralston, J.L. & Chang, K.H. (1991). Stresses at the dentinoenamel junction of human teeth—A finite element investigation. J Prosthet Dent 66, 451459.
Habelitz, S., Marshall, S.J., Marshall, G.W. & Balooch, M. (2001). The functional width of the dentino-enamel junction determined by AFM-based nanoscratching. J Struct Biol 135, 294301.
Hanschin, R.G. & Stern, W.B. (1995). X-ray diffraction studies on the lattice perfection of human bone apatite (Crista iliaca). Bone 16, 355S363S.
Hoppe, A., Güldal, N.S. & Boccaccini, A.R. (2011). A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32, 27572774.
Karan, K., Yao, X., Xu, C. & Wang, Y. (2009). Chemical profile of the dentin substrate in non-carious cervical lesions. Dent Mater 25, 12051212.
Kay, M.I., Young, R.A. & Posner, A.S. (1964). Crystal structure of HAp. Nature 204, 10501052.
Kinney, J.H., Oliveira, J., Haupt, D.L., Marshall, G.W. & Marshall, S.J. (2001). The spatial arrangement of tubules in human dentin. J Mater Sci Mater Med 12, 743751.
Klug, H.P. & Alexander, L.E. (1974). X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. New York: Wiley.
LeGeros, R.Z. (1990). Chemical and crystallographic events in the caries process. J Dent Res 69(Spec No), 567574. discussion 634–636.
Lewis, D. & Northwood, D.O. (1968). X-ray diffraction measurement of microstrains. Strain 4, 1923.
Liss, K.D., Bartels, A., Schreyer, A. & Clemens, H. (2003). High energy X-rays: A tool for advanced bulk investigations in materials science and physics. Texture Microstruct 35, 219252.
Liu, Y., Tjaderhane, L., Breschi, L., Mazzoni, A., Li, N., Mao, J., Pashley, D.H. & Tay, F.R. (2011). Limitations in bonding to dentin and experimental strategies to prevent bond degradation. J Dent Res 90, 953968.
Low, I.M. (2004). Depth-profiling of crystal structure, texture, and microhardness in a functionally graded tooth enamel. J Am Ceram Soc 87, 21252131.
Ma, X.N., Zhou, J., Ge, B.F., Zhen, P., Ma, H.P., Shi, W.G., Cheng, K., Xian, C. & Chen, K.M. (2013). Icariin induces osteoblast differentiation and mineralization without dexamethasone in vitro. Planta Med 79, 15011508.
Marshall, G.W., Marshall, S.J., Kinney, J.H. & Balooch, M. (1997). The dentin substrate: Structure and properties related to bonding. J Dent 25, 441458.
Mazzitelli, C., Monticelli, F., Toledano, M., Ferrari, M. & Osorio, R. (2012). Effect of thermal cycling on the bond strength of self-adhesive cements to fiber posts. Clin Oral Investig 16, 909915.
Moraschini, V., Fai, C.K., Alto, R.M. & dos Santos, G.O. (2015). Amalgam and resin composite longevity of posterior restorations: A systematic review and meta-analysis. J Dent 43, 10431050.
Moshaverinia, A., Ansari, S., Moshaverinia, M., Roohpour, N., Darr, J.A. & Rehman, I. (2008). Effects of incorporation of HAp and fluoroapatite nanobioceramics into conventional glass ionomer cements (GIC). Acta Biomater 4, 432440.
Okazaki, M. & LeGeros, R.Z. (1992). Crystallographic and chemical properties of Mg-containing apatites before and after suspension in solutions. Magnes Res 5, 103108.
Osorio, R., Yamauti, M., Osorio, E., Román, J.S. & Toledano, M. (2011). Zinc-doped dentin adhesive for collagen protection at the hybrid layer: Zinc-doped dental adhesive. Eur J Oral Sci 119, 401410.
Pasteris, J.D., Wopenka, B., Freeman, J.J., Rogers, K., Valsami-Jones, E., van der Houwen, J.A. & Silva, M.J. (2004). Lack of OH in nanocrystalline apatite as a function of degree of atomic order: Implications for bone and biomaterials. Biomaterials 25, 229238.
Perales, F., De las Heras, C. & Agulló-Rueda, F. (2008). Structural properties of MgP2 and ZnS in thin film and in multilayer optical coatings. J Phys D Appl Phys 41, 225405.
Qvist, V., Qvist, J. & Mjör, I.A. (1990). Placement and longevity of tooth-colored restorations in Denmark. Acta Odontol Scand 48, 305311.
Rezwan, K., Chen, Q.Z., Blaker, J.J. & Boccaccini, A.R. (2006). Biodegradable and bioactive porous polymer/inorganic composite scaffolds for bone tissue engineering. Biomaterials 27, 34133431.
Sauro, S., Osorio, R., Osorio, E., Watson, T.F. & Toledano, M. (2013). Novel light-curable materials containing experimental bioactive micro-fillers remineralise mineral-depleted bonded-dentine interfaces. J Biomater Sci Polym Ed 24, 940956.
Schwartz, A.G., Pasteris, J.D., Genin, G.M., Daulton, T.L. & Thomopoulos, S. (2012). Mineral distributions at the developing tendon enthesis. PLoS ONE 7, e48630.
Sjögren, P. & Halling, A. (2002). Survival time of class II molar restorations in relation to patient and dental health insurance costs for treatment. Swed Dent J 26, 5966.
Ten Cate, J.M. & Featherstone, J.D.B. (1996). Physicochemical aspects of fluoride-enamel interactions. In Fluoride in Dentistry, Fejerskov, O., Ekstrand, J. & Burt, B.A. (Eds.), pp. 187213. Copenhagen: Munksgaard Textbook.
Toledano, M., Aguilera, F.S., Osorio, E., Cabello, I., Toledano-Osorio, M. & Osorio, R. (2015 a). Mechanical and chemical characterisation of demineralized human dentine after amalgam restorations. J Mech Behav Biomed Mater 47, 6576.
Toledano, M., Aguilera, F.S., Osorio, E., López-López, M.T., Cabello, I., Toledano-Osorio, M. & Osorio, R. (2015 b). On modeling and nanoanalysis of caries-affected dentin surfaces restored with Zn-containing amalgam and in vitro oral function. Biointerphases 10, 041004.
Toledano, M., Aguilera, F.S., Osorio, E., López-López, M.T., Cabello, I., Toledano-Osorio, M. & Osorio, R. (2016). Submicron-to-nanoscale structure characterization and organization of crystals in dentin bioapatites. RSC Adv 6, 4526545278.
Toledano, M., Osorio, E., Aguilera, F.S., Toledano-Osorio, M., López-López, M.T. & Osorio, R. (2015 c). Stored potential energy and viscoelastic properties alterations after restoring dentin with Zn-containing materials. J Mech Behav Biomed Mater (in press).
Toledano, M., Sauro, S., Cabello, I., Watson, T. & Osorio, R. (2013). A Zn-doped etch-and-rinse adhesive may improve the mechanical properties and the integrity at the bonded-dentin interface. Dent Mater 29, e142e152.
Toledano, M., Yamauti, M., Ruiz-Requena, M.E. & Osorio, R. (2012). A ZnO-doped adhesive reduced collagen degradation favouring dentine remineralization. J Dent 40, 756765.
Vaseenon, S. (2011). Relationship between caries-affected dentin mineral density and microtensile bond strength. Master’s Thesis. University of Iowa. Iowa City, Iowa. USA.
Wagner, C.N.J. (1966). Analysis of the Broadening and Changes in Position of Peaks in an X-Ray Powder Pattern. In Local Atomic Arrangements Studies by X-ray Diffraction (Metallurgical Society Conferences 36 Cohen, J.B. & Hilliard, J.E. (Eds.), pp. 219268. New York: Gordon and Breach Science Publishers.
Xue, J., Zavgorodniy, A.V., Kennedy, B.J., Swain, M.V. & Li, W. (2013). X-ray microdiffraction, TEM characterization and texture analysis of human dentin and enamel. J Microsc 251, 144153.
Xue, J., Zhang, L., Zou, L., Liao, Y., Li, J., Xiao, L. & Li, W. (2008). High-resolution X-ray microdiffraction analysis of natural teeth. J Synchrotron Radiat 15, 235238.
Zhang, Z., Zhou, F. & Lavernia, E.J. (2003). On the analysis of grain size in bulk nanocrystalline materials via X-ray diffraction. Metall Mater Trans A 34A, 13491355.
Zurick, K.M., Qin, C. & Bernards, M.T. (2013). Mineralization induction effects of osteopontin, bone sialoprotein, and dentin phosphoprotein on a biomimetic collagen substrate. J Biomed Mater Res A 101A, 15711581.


Zinc-Containing Restorations Create Amorphous Biogenic Apatite at the Carious Dentin Interface: A X-Ray Diffraction (XRD) Crystal Lattice Analysis

  • Manuel Toledano (a1), Fátima S. Aguilera (a1), Modesto T. López-López (a2), Estrella Osorio (a1), Manuel Toledano-Osorio (a1) and Raquel Osorio (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed