Skip to main content Accessibility help
×
Home

µ-XRF Analysis of Trace Elements in Lapis Lazuli-Forming Minerals for a Provenance Study

  • Debora Angelici (a1) (a2), Alessandro Borghi (a1), Fabrizia Chiarelli (a2), Roberto Cossio (a1), Gianluca Gariani (a2), Alessandro Lo Giudice (a2) (a3), Alessandro Re (a2) (a3), Giovanni Pratesi (a4) and Gloria Vaggelli (a5)...

Abstract

This paper presents new developments on the provenance study of lapis lazuli started by our group in 2008: during the years a multi-technique approach has been exploited to obtain minero-petrographic characterization and creation of a database considering only rock samples of known provenance. Since the final aim of the study is to develop a method to analyze archeological findings and artworks made with lapis lazuli in a completely non-invasive way, ion beam analysis techniques were employed to trace the provenance of the raw material used for the production of artifacts. Continuing this goal and focusing the analysis on determination of more significant minero-chemical markers for the provenance study of trace elements in different minerals, the method was extended with the use of micro X-ray fluorescence (µ-XRF), to test the potential of the technique for this application. The analyzes were focused on diopside and pyrite in lapis lazuli samples of known provenance (Afghanistan, Tajikistan, and Siberia). In addition, µ-XRF data were compared with micro proton-induced X-ray emission (µ-PIXE) results to verify the agreement between the two databases and to compare the analytical performance of both techniques for this application.

Copyright

Corresponding author

* Corresponding author. debora.angelici@unito.it

References

Hide All
Abraitis, P.K., Pattrick, R.A.D. & Vaughan, D.J. (2004). Variations in the compositional, textural and electrical properties of natural pyrite: A review. Int J Miner Process 74, 4159.
Aleksandrov, S.M. & Senin, V.G. (2006). Genesis and composition of lazurite in magnesian skarns. Geochem Int 10, 10531067.
Ballirano, P. & Maras, A. (2006). Mineralogical characterization of the blue pigment of Michelangelo’s fresco ‘The last judgment’. Am Miner 91, 9971005.
Beck, L. (2014). Recent trends in IBA for cultural heritage. Nucl Instrum Met Phys Res B 332, 439444.
Bollini, D., Cervellara, F., Egeni, G.P., Mazzoldi, P., Moschini, G., Rossi, P. & Rudello, V. (1993). The microbeam facility of the AN-2000 accelerator of the Laboratori Nazionali di Legnaro. Nucl Instrum Met Phys Res A 328, 173176.
Bowles, J.F.W., Howie, R.A., Vaughan, J. & Zussman, L. (2011). Rock-Forming Mineral. Non-Silicates: Oxides, Hydroxides and Sulphi des , 2nd ed., vol. 5A. London: Geological Society of London.
Calusi, S. (2011). The external ion microbeam of the LABEC laboratory in Florence: Some applications to Cultural Heritage. Microsc Microanal 17, 661666.
Calusi, S., Colombo, E., Giuntini, L., Lo Giudice, A., Manfredotti, C., Massi, M., Pratesi, G. & Vittone, E. (2008). The ionoluminescence apparatus at the LABEC external microbeam facility. Nucl Instrum Met Phys Res B 266, 23062310.
Campbell, J.L., Boyd, N.I., Grassi, N., Bonnick, P. & Maxwell, J.A. (2010). The Guelph PIXE software package IV. Nucl Instrum Met Phys Res B 268, 33563363.
Casanova, M. (2013). Le lapis-lazuli dans l’Orient Ancien: production et circulation du néolithique au II e millénaire AV. Paris: J.-C. Editions du Comité des travaux historiques et scientifiques.
Da Cunha, C. (1989). Le lapis lazuli: son Histoire, ses gisements, se imitations. Paris, France: Editions du Rocher. (in French).
Elam, W.T., Scruggs, B. & Nicolosi, J. (2010). Combined multiple-excitation FP method for micro-XRF analysis of difficult samples. Powder Diffr 25(2), 182186.
Favaro, M., Guastoni, A., Marini, F., Bianchin, S. & Gambirasi, A. (2012). Characterization of lapis lazuli and corresponding purified pigments for a provenance study of ultramarine pigments used in works of art. Anal Bioanal Chem 402, 21952208.
Hassan, I., Peterson, R.C. & Grundy, H.D. (1985). The structure of lazurite, ideally Na6Ca2(Al6Si6O24)S2, a member of the sodalite group. Acta Crystallographica C41, 827832.
Hermann, G. (1968). Lapis Lazuli: The early phases of its trade. Iraq 30(1), 2157.
Hogart, D.D. & Griffin, W. (1976). New data on lazurite. Lithos 9, 3954.
Hogart, D.D. & Griffin, W. (1978). Lapis lazuli from Baffin Island—a Precambrian meta-evaporite. Lithos 11, 3760.
Holland, T.J.B. (1983). The experimental determination of activities in disordered and short-range ordered jadeitic pyroxenes. Contrib Mineral Petr 82, 214220.
Janssens, K., Vittiglio, G., Deraedt, I., Aerts, A., Vekemans, B., Vincze, L., Wei, F., Deryck, I., Schalm, O., Adams, F., Rindby, A., Knöchel, A., Simionovici, A. & Snigirev, A. (2000). Use of microscopic XRF for non-destructive analysis in art and archaeology. X-Ray Spectrom 29, 7391.
Jenkins, R., Gould, R.W. & Gedcke, D. (1995). Quantitative X-Ray Spectrometry, 2nd ed. New York: Marcel Dekker.
Lo Giudice, A., Re, A., Angelici, D., Calusi, S., Gelli, N., Giuntini, L., Massi, M. & Pratesi, M. (2012). Analy Bioanal Chem 404, 277281.
Lo Giudice, A., Re, A., Calusi, S., Giuntini, L., Massi, M., Olivero, P., Pratesi, G., Albonico, M., Conz, E. (2009). Multitechnique characterization of lapis lazuli for provenance study. Anal Bioanal Chem 395, 22112217.
Mantler, M. & Schreiner, M. (2000). X-ray fluorescence spectrometry in art and archaeology. X-Ray Spectrom 29, 317.
Morimoto, N. (1988). Nomenclature of pyroxenes. Am Mineral 73, 11231133.
Nibbi, A. (1981). Ancient Egypt and some Eastern Neighbours (chapter 2) Park Ridge: Noyes Publication. pp. 3355.
Pearce, N.J.G., Perkins, W.T., Westgate, J.A., Gorton, M.P., Jackson, S.E., Neal, C.R. & Chenery, S.P. (1997). A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials. J Geostand Geoanal 21, 115144.
Re, A., Angelici, D., Lo Giudice, A., Corsi, J., Allegretti, S., Biondi, A.F., Gariani, G., Calusi, S., Gelli, N., Giuntini, L., Massi, M., Taccetti, F., La Torre, L., Rigato, V. & Pratesi, G. (2015). Ion beam analysis for the provenance attribution of lapis lazuli used in glyptic art: The case of the “Collezione Medicea”. Nucl Instrum Met Phys Res B, doi:10.1016/j.nimb.2014.11.060.
Re, A., Angelici, D., Lo Giudice, A., Maupas, E., Giuntini, L., Calusi, S., Gelli, N., Massi, M., Borghi, A., Gallo, L.M., Pratesi, G. & Mando’, P.A. (2013). New markers to identify the provenance of lapis lazuli: Trace elements in pyrite by means of micro-PIXE. Appl Phys A 111, 6974.
Re, A., Lo Giudice, A., Angelici, D., Calusi, S., Giuntini, L., Massi, M. & Pratesi, G. (2011). Lapis lazuli provenance study by means of micro-PIXE. Nucl Instrum Met Phys Res B 269, 23732377.
Rindby, A. & Janssens, K. (2002). Microbeam XRF. In Handbook of X-Ray Spectrometry, Van Grieken R.E. & Markowicz A.A. (Eds.), chapter 11, 631718. New York: Marcel Dekker.
Sokaras, D., Karydas, A.G., Oikonomou, A., Zacharias, N., Beltsios, K. & Kantarelou, V. (2009). Combined elemental analysis of ancient glass beads by means of ion beam, portable XRF, and EPMA techniques. Anal Bioanal Chem 395, 21992209.
Tosi, M. (1974). The Lapis Lazuli Trade Across the Iranian Plateau in the 3rd Millennium BC. In Gururājamañjarikā, Tucci G. (Ed.), pp. 322. Napoli, Italy: Istituto Universitario Orientale.
Vaggelli, G. & Cossio, R. (2012). µ-XRF analysis of glasses: A non-destructive utility for cultural heritage applications. Analyst 137, 662667.
Vaggelli, G., Lovera, V., Cossio, R. & Mirti, P. (2013). Islamic glass weights from Egypt. A systematic study by non-destructive µ-XRF technique. J Non-Crystal Solids 363, 96102.
Wyart, J., Bariand, P. & Filippi, J. (1981). Lapis lazuli from Sar-i-Sang, Badakhshan, Afghanistan. Gems Gemol 17, 184190.
Zöldföldi, J., Richter, S., kasztovszky, Z.S. & MIHÁLY, J. (2006). Where does lapis lazuli come from? Non-destructive provenance analysis by PGAA. In Proceeding of the 34th International Symposium on Archaeometry, 3–7 May 2004, Zaragoza, Spain, pp. 353–360.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed