Skip to main content Accessibility help
×
Home

X-Ray Microanalysis Combined with Monte Carlo Simulation for the Analysis of Layered Thin Films: The Case of Carbon Contamination

  • Aldo Armigliato (a1) and Rodolfo Rosa (a1) (a2)

Abstract

A previously developed Monte Carlo code has been extended to the X-ray microanalysis in a (scanning) transmission electron microscope of plan sections, consisting of bilayers and triple layers. To test the validity of this method for quantification purposes, a commercially available NiOx (x ∼ 1) thin film, deposited on a carbon layer, has been chosen. The composition and thickness of the NiO film and the thickness of the C support layer are obtained by fitting to the three X-ray intensity ratios I(NiK)/I(OK), I(NiK)/I(CK), and I(OK)/I(CK). Moreover, it has been investigated to what extent the resulting film composition is affected by the presence of a contaminating carbon film at the sample surface. To this end, the sample has been analyzed both in the (recommended) “grid downward” geometry and in the upside/down (“grid upward”) situation. It is found that a carbon contaminating film of few tens of nanometers must be assumed in both cases, in addition to the C support film. Consequently, assuming the proper C/NiOx/C stack in the simulations, the Monte Carlo method yields the correct oxygen concentration and thickness of the NiOx film.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      X-Ray Microanalysis Combined with Monte Carlo Simulation for the Analysis of Layered Thin Films: The Case of Carbon Contamination
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      X-Ray Microanalysis Combined with Monte Carlo Simulation for the Analysis of Layered Thin Films: The Case of Carbon Contamination
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      X-Ray Microanalysis Combined with Monte Carlo Simulation for the Analysis of Layered Thin Films: The Case of Carbon Contamination
      Available formats
      ×

Copyright

Corresponding author

Corresponding author. E-mail: armigliato@bo.imm.cnr.it

References

Hide All
Armigliato, A. (1999). Thin film X-ray microanalysis with the analytical electron microscope. J Anal At Spectrom 14, 413418.
Armigliato, A. & Rosa, R. (1990). Simultaneous determination of composition and thickness of thin films by X-ray microanalysis at 300 kV and Monte Carlo simulation. Ultramicroscopy 32, 127136.
Bethe, H.A. (1930). Zur Theorie des Durchgangs Schneller Korpuskolarstrahlen Durch Materie. Ann Phys 5, 325400.
Cliff, G. & Lorimer, G. (1975). The quantitative analysis of thin films. J Microsc 103, 203207.
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope, 2nd ed. New York: Plenum Press.
Egerton, R.F. & Cheng, S.C. (1994). Characterization of an analytical electron microscope with a NiO test specimen. Ultramicroscopy 55, 4354.
Horita, Z., Ichitani, K., Sano, T. & Nemoto, M. (1989). Applicability of the differential X-ray absorption method to the determinations of foil thickness and local composition in the analytical electron microscope. Phil Mag A 59, 939952.
Horita, Z., Sano, T. & Nemoto, M. (1986). An extrapolation method for the determination of Cliff-Lorimer k AB factors at zero foil thickness. J Microsc 143, 215231.
Krause, M.O. (1979). Atomic radiative and radiationless yields for K and L shells. J Phys Chem Ref Data 8, 307327.
Pouchou, J.L. & Pichoir, F. (1991). Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP.” In Electron Probe Quantitation, Heinrich, K.F.J. & Newbury, D.E. (Eds.), pp. 3175. New York: Plenum Press.
Powell, C.J. (1976). Cross sections for ionization of inner shell electrons by electrons. Rev Mod Phys A 48, 3347.
Rosa, R. & Armigliato, A. (1989). Monte-Carlo simulation of thin film X-ray microanalysis at high energies. X-ray Spectrom 18, 1923.
Schreiber, T.P. & Wims, A.M. (1982). Relative intensity factors for K, L and M shell X-ray lines. X-ray Spectrom 11, 4245.
Veigele, W.M.J. (1973). Photon cross sections from 0.1 keV to 1 MeV for elements Z = 1 to Z = 94. Atom Data Tables 5, 51111.
Watanabe, M. & Williams, D.B. (2006). The quantitative analysis of thin specimens: A review of progress from the Cliff-Lorimer to the new ζ-factor methods. J Microsc 221, 89109.
Westwood, A.D., Michael, J.R. & Notis, M.R. (1992). Experimental determination of light-element k-factors using the extrapolation technique: Oxygen segregation in aluminium nitride. J Microsc 167, 287302.
Williams, E.J. (1933). Applications of the method of impact parameter in collisions. Proc Roy Soc A 139, 163186.

Keywords

X-Ray Microanalysis Combined with Monte Carlo Simulation for the Analysis of Layered Thin Films: The Case of Carbon Contamination

  • Aldo Armigliato (a1) and Rodolfo Rosa (a1) (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed