Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T11:32:41.067Z Has data issue: false hasContentIssue false

Voltage-Pulsed and Laser-Pulsed Atom Probe Tomography of a Multiphase High-Strength Low-Carbon Steel

Published online by Cambridge University Press:  27 October 2011

Michael D. Mulholland
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108, USA
David N. Seidman*
Affiliation:
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108, USA Northwestern UniversityCenter for Atom Probe Tomography (NUCAPT), Evanston, IL 60208-3108, USA
*
Corresponding author. E-mail: d-seidman@northwestern.edu
Get access

Abstract

The differences in artifacts associated with voltage-pulsed and laser-pulsed (wavelength = 532 or 355 nm) atom-probe tomographic (APT) analyses of nanoscale precipitation in a high-strength low-carbon steel are assessed using a local-electrode atom-probe tomograph. It is found that the interfacial width of nanoscale Cu precipitates increases with increasing specimen apex temperatures induced by higher laser pulse energies (0.6–2 nJ pulse−1 at a wavelength of 532 nm). This effect is probably due to surface diffusion of Cu atoms. Increasing the specimen apex temperature by using pulse energies up to 2 nJ pulse−1 at a wavelength of 532 nm is also found to increase the severity of the local magnification effect for nanoscale M2C metal carbide precipitates, which is indicated by a decrease of the local atomic density inside the carbides from 68 ± 6 nm−3 (voltage pulsing) to as small as 3.5 ± 0.8 nm−3. Methods are proposed to solve these problems based on comparisons with the results obtained from voltage-pulsed APT experiments. Essentially, application of the Cu precipitate compositions and local atomic density of M2C metal carbide precipitates measured by voltage-pulsed APT to 532 or 355 nm wavelength laser-pulsed data permits correct quantification of precipitation.

Type
Materials Applications
Copyright
Copyright © Microscopy Society of America 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bhadeshia, H.K.D.H. & Honeycombe, R.W.K. (2006). Steels: Microstructure and Properties. Boston, MA: Butterworth-Heinemann.Google Scholar
Brandon, S. (1968). Field evaporation. In Field-Ion Microscopy, Hren, J.H. & Ranganathan, S. (Eds.), p. 32. New York: Plenum Press.Google Scholar
Bunton, J.H., Olson, J.D., Lenz, D.R. & Kelly, T.E. (2007). Advances in pulsed-laser atom probe: Instrument and specimen design for optimum performance. Microsc Microanal 13(6), 418427.CrossRefGoogle ScholarPubMed
Carinci, G.M., Hetherington, M.G. & Olson, G.B. (1988). M2C carbide precipitation in Af1410 steel. J Phys-Paris 49(C-6), 311316.CrossRefGoogle Scholar
Cerezo, A., Clifton, P.H., Galtrey, M.J., Humphreys, C.J., Kelly, T.F., Larson, D.J., Lozano-Perez, S., Marquis, E.A., Oliver, R.A., Sha, G., Thompson, K., Zandbergen, M. & Alvis, R.L. (2007a). Atom probe tomography today. Mater Today 10(12), 3642.CrossRefGoogle Scholar
Cerezo, A., Clifton, P.H., Gomberg, A. & Smith, G.D.W. (2007b). Aspects of the performance of a femtosecond laser-pulsed 3-dimensional atom probe. Ultramicroscopy 107(9), 720725.CrossRefGoogle ScholarPubMed
Chen, Y.M., Ohkubo, T., Kodzuka, M., Morita, K. & Hono, K. (2009). Laser-assisted atom probe analysis of zirconia/spinel nanocomposite ceramics. Scripta Mater 61(7), 693696.CrossRefGoogle Scholar
Chiaramonti, A.N., Schreiber, D.K., Egelhoff, W.F., Seidman, D.N. & Petford-Long, A.K. (2008). Effects of annealing on transport properties of MgO-based magnetic tunnel junctions. Appl Phys Lett 93, 103113.CrossRefGoogle Scholar
Gagliano, M.S. & Fine, M.E. (2004). Characterization of the nucleation and growth behavior of copper precipitates in low-carbon steels. Metal Mater Trans A 35(8), 23232329.CrossRefGoogle Scholar
Gault, B., Mottay, E., Courjaud, A., Vurpillot, F., Bostell, A., Menand, A. & Deconihout, B. (2007). Ultrafast laser assisted field evaporation and atom probe tomography applications. In COLA'05: 8th International Conference on Laser Ablation, Hess, W.P., Herman, P.R., Bauerle, D. & Koinuma, H. (Eds.), pp. 132135. Bristol, UK: Iop Publishing Ltd.Google Scholar
Gault, B., Muller, M., La Fontaine, A., Moody, M.P., Shariq, A., Cerezo, A., Ringer, S.P. & Smith, G.D.W. (2010). Influence of surface migration on the spatial resolution of pukses laser atom probe tomography. J Appl Phys 108, 044904.CrossRefGoogle Scholar
Goodman, S.R., Brenner, S.S. & Low, J.R. Jr. (1973). FIM-atom probe study of the precipitation of copper from iron-1. 4 at. pct copper—Part 1. Metall Trans 4(10), 23622369.Google Scholar
Gorelikov, D.V. (2000). A high-resolution pulsed-laser atom probe field ion microscope. PhD Thesis. Evanston, IL: Northwestern University.Google Scholar
Hellman, O.C., Vandenbroucke, J.A., Rusing, J., Isheim, D. & Seidman, D.N. (2000). Analysis of three-dimensional atom-probe data by the proximity histogram. Microsc Microanal 6(5), 437444.CrossRefGoogle ScholarPubMed
Isheim, D., Kolli, R.P., Fine, M.E. & Seidman, D.N. (2006). An atom-probe tomographic study of the temporal evolution of the nanostructure of Fe-Cu based high-strength low-carbon steels. Scripta Mater 55(1), 3540.CrossRefGoogle Scholar
Kellogg, G.L. (1981). Determining the field emitter temperature during laser irradiation in the pulsed laser atom probe. J Appl Phys 52(8), 53205328.CrossRefGoogle Scholar
Kellogg, G.L. (1987). Pulsed-laser atom probe mass-spectroscopy. J Phys E 20(2), 125136.CrossRefGoogle Scholar
Kellogg, G.L. & Tsong, T.T. (1980). Pulsed-laser atom-probe field-ion microscopy. J Appl Phys 51(2), 11841193.CrossRefGoogle Scholar
Kelly, T.F., Larson, D.J., Thompson, K., Alvis, R.L., Bunton, J.H., Olson, J.D. & Gorman, B.P. (2007). Atom probe tomography of electronic materials. Ann Rev Mater Res 37, 681727.CrossRefGoogle Scholar
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78(3), 031101.CrossRefGoogle ScholarPubMed
Kolli, R.P. & Seidman, D.N. (2007). Comparison of compositional and morphological atom-probe tomography analyses for a multicomponent Fe-Cu steel. Microsc Microanal 13, 272284.CrossRefGoogle ScholarPubMed
Kolli, R.P. & Seidman, D.N. (2008). The temporal evolution of the decomposition of a concentrated multicomponent Fe-Cu-based steel. Acta Mater 56, 20732088.CrossRefGoogle Scholar
Kolli, R.P., Wojes, R.M., Zaucha, S. & Seidman, D.N. (2008). A subnanoscale study of the nucleation, growth, and coarsening kinetics of Cu-rich precipitates in a multicomponent Fe-Cu based steel. Int J Mater Res 99(5), 513527.CrossRefGoogle Scholar
Krakauer, B.W., Hu, J.G., Kuo, S.M., Mallick, R.L., Seki, A., Seidman, D.N., Baker, J.P. & Loyd, R.J. (1990). A system for systematically preparing atom-probe field-ion-microscope specimens for the study of internal interfaces. Rev Sci Instrum 61(11), 33903398.CrossRefGoogle Scholar
Kraus, G. (2005). Steels: Processing, Structure, and Performance. Materials Park, OH: ASM International.Google Scholar
Larson, D.J., Petford-Long, A.K., Ma, Y.Q. & Cerezo, A. (2004). Information storage materials: Nanoscale characterisation by three-dimensional atom probe analysis. Acta Mater 52(10), 28472862.CrossRefGoogle Scholar
Leitner, H., Stiller, K., Andren, H.O. & Danoix, F. (2004). Conventional and tomographic atom probe investigations of secondary-hardening carbides. Surf Interface Anal 36(5-6), 540545.CrossRefGoogle Scholar
Li, F., Ohkubo, T., Chen, Y.M., Kodzuka, M., Ye, F., Ou, D.R., Mori, T. & Hono, K. (2010). Laser-assisted three-dimensional atom probe analysis of dopant distribution in Gd-doped CeO2. Scripta Mater 63(3), 332335.CrossRefGoogle Scholar
Liddle, J.A., Smith, G.D.W. & Olson, G.B. (1986). Alloy carbide precipitation in a high cobalt-nickel secondary hardening steel. J Phys-Paris 47(C-7), 223231.CrossRefGoogle Scholar
Ma, E., Atzmon, M. & Pinkerton, F.E. (1993). Thermodynamic and magnetic properties of metastable FexCu100-X solid solutions formed by mechanical alloying. J Appl Phys 74(2), 955962.CrossRefGoogle Scholar
Mao, Z., Sudbrack, C.K., Yoon, K.E., Martin, G. & Seidman, D.N. (2007). The mechanism of morphogenesis in a phase separating concentrated multi-component alloy. Nat Mater 6, 210216.CrossRefGoogle Scholar
Marquis, E.A. & Gault, B. (2008). Determination of the tip temperature in laser assisted atom-probe tomography using charge state distributions. J Appl Phys 104(8), 084914.CrossRefGoogle Scholar
Miller, M.K. (2000). Atom Probe Tomography. New York: Kluwer Academic.CrossRefGoogle Scholar
Montgomery, J.S. (1990). M2C carbide precipitation in martensitic cobalt-nickel steels. PhD Thesis. Evanston, IL: Northwestern University.Google Scholar
Moutanabbir, O., Isheim, D., Seidman, D.N., Kawamura, Y. & Itoh, K.M. (2011). Ultraviolet-laser atom-probe tomographic 3-D atom-by-atom mapping of isotopically modulated Si nanoscopic layers. Appl Phys Lett 98, 013111-1013111-3.CrossRefGoogle Scholar
Mulholland, M.D. & Seidman, D.N. (2009). Multiple dispersed phases in a high-strength low-carbon steel: An atom-probe tomographic and synchrotron X-ray diffraction study. Scripta Mater 60, 992995.CrossRefGoogle Scholar
Mulholland, M.D. & Seidman, D.N. (2011). Nanoscale co-precipitation and mechanical properties in a high-strength low-carbon steel. Acta Mater 59, 18811897.CrossRefGoogle Scholar
Nembach, E. (1997). Particle Strengthening of Metals and Alloys. New York: John Wiley and Sons.Google Scholar
Othen, P.J., Jenkins, M.L. & Smith, G.D.W. (1994). High-resolution electron-microscopy studies of the structure of Cu Precipitates in alpha-Fe. Philos Mag A 70(1), 124.CrossRefGoogle Scholar
Perez, M., Perrard, F., Massardier, V., Klaber, X., Deschamps, A., De Monestrol, H., Pareige, P. & Covarel, G. (2005). Low-temperature solubility of copper in iron: experimental study using thermoelectric power, small angle X-ray scattering, and tomographic atom probe. Philos Mag 85(20), 21972210.CrossRefGoogle Scholar
Saha, A., Jung, J. & Olson, G.B. (2007). Prototype evaluation of transformation toughened blast resistant naval hull steels: Part II. J Computer-Aided Mater Des 14(2), 201233.CrossRefGoogle Scholar
Saha, A. & Olson, G.B. (2007). Computer-aided design of transformation toughened blast resistant naval hull steels: Part I. Computer-Aided Mater Des 14(2), 177200.CrossRefGoogle Scholar
Schreiber, D.K., Choi, Y.S., Liu, Y., Chiaramonti, A.N., Djayaprawira, D.D., Seidman, D.N. & Petford-Long, A.K. (2011a). Effects of elemental distributions on the behavior of MgO-based magnetic tunnel junctions. J Appl Phys 109, 103909-1103909-10.CrossRefGoogle Scholar
Schreiber, D.K., Choi, Y.S., Liu, Y., Djayaprawira, D.D., Seidman, D.N. & Petford-Long, A.K. (2011b). Enhanced magnetoresistance in naturally-oxidized MgO-based magnetic tunnel junctions with ferromagnetic CoFe/CoFeB bilayers. Appl Phys Lett 98, 232506.CrossRefGoogle Scholar
Seidman, D.N. (2007). Three-dimensional atom-probe tomography: Advances and applications. Ann Rev Mater Res 37, 127158.CrossRefGoogle Scholar
Seidman, D.N. & Stiller, K. (2009a). An atom-probe tomography primer. MRS Bull 34(10), 717724.CrossRefGoogle Scholar
Seidman, D.N. & Stiller, K. (2009b). A renaissance in atom-probe tomography. MRS Bull 34(10), 717749.CrossRefGoogle Scholar
Sha, G. & Ringer, S.P. (2009). Effect of laser pulsing on the composition measurement of an Al-Mg-Si-Cu alloy using three-dimensional atom probe. Ultramicroscopy 109(5), 580584.CrossRefGoogle ScholarPubMed
Smith, G.D.W., Grovenor, C.R.M., Delargy, K.M., Godfrey, T.J. & McCabe, A.R. (1982). Direct comparison of performance of atom probe in pulsed-laser and voltage-pulsed modes. In Proc. 29th Int. Field Emission Symp., Andren, H.O. & Norden, H. (Eds.), pp. 283289. Stockholm, Sweden: Almqvist & Wiksell.Google Scholar
Stiller, K., Svensson, L.E., Howell, P.R., Wang, R., Andren, H.O. & Dunlop, G.L. (1984). High-resolution microanalytical study of precipitation in a powder metallurgical high-speed steel. Acta Metall 32(9), 14571467.CrossRefGoogle Scholar
Sundman, B., Jansson, B. & Andersson, J.O. (1985). The thermo-calc databank system. CALPHAD 9(2), 153190.CrossRefGoogle Scholar
Tsong, T.T. (1978). Field-ion image-formation. Surf Sci 70(1), 211233.CrossRefGoogle Scholar
Vaynman, S., Isheim, D., Kolli, R.P., Bhat, S.P., Seidman, D.N. & Fine, M.E. (2008). High-strength low-carbon ferritic steel containing Cu-Fe-Ni-Al-Mn precipitates. Metall Mater Trans A 39A(2), 363373.CrossRefGoogle Scholar
Vurpillot, F., Bostel, A. & Blavette, D. (2000). Trajectory overlaps and local magnification in three-dimensional atom probe. Appl Phys Lett 76(21), 31273129.CrossRefGoogle Scholar
Worrall, G.M., Buswell, J.T., English, C.A., Hetherington, M.G. & Smith, G.D.W. (1987). A study of the precipitation of copper particles in a ferrite matrix. J Nucl Mater 148(1), 107114.CrossRefGoogle Scholar
Yao, L., Gault, B., Cairney, J.M. & Ringer, S.P. (2010). On the multiplicity of field evaporation events in atom probe: A new dimension to the analysis of mass spectra. Philos Mag Lett 90(2), 121129.CrossRefGoogle Scholar
Yoon, K.E., Seidman, D.N., Antoine, C. & Bauer, P. (2008). Atomic-scale chemical analyses of niobium oxide/niobium interfaces via atom-probe tomography. Appl Phys Lett 93, 132502.CrossRefGoogle Scholar
Zhou, Y., Booth-Morrison, C. & Seidman, D.N. (2008). On the field evaporation behavior of a model Ni-Al-Cr superalloy studied by picosecond pulsed-laser atom-probe tomography. Microsc Microanal 14, 571580.CrossRefGoogle Scholar