Skip to main content Accessibility help
×
Home

Ultrahigh-Vacuum Third-Order Spherical Aberration (Cs) Corrector for a Scanning Transmission Electron Microscope

  • Kazutaka Mitsuishi (a1), Masaki Takeguchi (a1), Yukihito Kondo (a2), Fumio Hosokawa (a2), Kimiharu Okamoto (a2), Takumi Sannomiya (a2), Madoka Hori (a2), Takeshi Iwama (a2), Muneyuki Kawazoe (a2) and Kazuo Furuya (a1)...

Abstract

Initial results from an ultrahigh-vacuum (UHV) third-order spherical aberration (Cs) corrector for a dedicated scanning transmission electron microscopy, installed at the National Institute for Materials Science, Tsukuba, Japan, are presented here. The Cs corrector is of the dual hexapole type. It is UHV compatible and was installed on a UHV column. The Ronchigram obtained showed an extension of the sweet spot area, indicating a successful correction of the third-order spherical aberration Cs. The power spectrum of an image demonstrated that the resolution achieved was 0.1 nm. A first trial of the direct measurement of the fifth-order spherical aberration C5 was also attempted on the basis of a Ronchigram fringe measurement.

Copyright

Corresponding author

Corresponding author. E-mail: Mitsuishi.Kazutaka@nims.go.jp

References

Hide All

REFERENCES

Batson, P.E. (2003). Aberration correction results in the IBM STEM instrument. Ultramicroscopy 96, 239249.
Batson, P.E., Dellby, N., & Krivanek, O.L. (2002). Sub-Ångstrom resolution using aberration corrected electron optics. Nature 418, 617620.
Dellby, N., Krivanek, O.L., Nellist, P.D., Batson, P.E., & Lupini, A.R. (2001). Progress in aberration-corrected scanning transmission electron microscopy. J Electron Microsc 50, 177185.
Falke, U., Bleloch, A.L., Falke, M., & Kolodzie, A. (2003). UK SuperSTEM: Capabilities, prospects and first results. Microsc Semicond Mater 180, 533536.
Haider, M., Uhlemann, S., Schwan, E., Rose, H., Kabius, B., & Urban, K. (1998). Electron microscopy image enhanced. Nature 392, 768769.
Haider, M., Uhlemann, S., & Zach, J. (2000). Upper limits for the residual aberrations of a high-resolution aberration-corrected STEM. Ultramicroscopy 81, 163175.
Hutchison, J.L., Titchmarsh, J.M., Cockayne, D.J.H., Doole, R.C., Hetherington, C.J.D., Kirkland, A.I., & Sawada, H. (2005). Versatile double aberration-corrected, energy filtered HREM/STEM for materials science. Ultramicroscopy 103, 715.
Ito, Y., Bleloch, A.L., & Brown, L.M. (1998). Nanofabrication of solid-state Fresnel lenses for electron optics. Nature 394, 4952.
Krivanek, O.L., Nellist, P.D., Dellby, N., Murfitt, M.F., & Szilagyi, M.Z. (2003). Towards sub-0.5 Å electron beams. Ultramicroscopy 96, 229237.
Lin, J.A. & Cowley, J.M. (1986). Calibration of the operating parameters for an HB5 STEM instrument. Ultramicroscopy 19, 3142.
Mitsuishi, K., Shimojo, M., Han, M., & Furuya, K. (2003). Electron-beam-induced deposition using a subnanometer-sized probe of high-energy electrons. Appl Phys Lett 83, 20642066.
Nellist, P.D., Chisholm, M.F., Dellby, N., Krivanek, O.L., Murfitt, M.F., Szilagyi, Z.S., Lupini, A.R., Borisevich, A., Sides, W.H., & Pennycook, S.J. (2004). Direct sub-angstrom imaging of a crystal lattice. Science 305, 1741.
Poppa, H. (2004). High resolution, high speed ultrahigh vacuum microscopy. J Vac Sci Technol A 22, 19311947.
Rose, H. (1990). Outline of a spherically corrected semiaplanatic medium-voltage transmission electron microscope. Optik 85, 1924.
Sawada, H., Tomita, T., Naruse, M., Honda, T., Hambridge, P., Hartel, P., Haider, M., Hetherington, C., Doole, R., Kirkland, A., Hutchison, J., Titchmarch, J., & Cockayne, D. (2005). Experimental evaluation of a spherical aberration-corrected TEM and STEM. J Elect Microsc 54, 119121.
Silvis-Cividjian, N., Hagen, C.W., Kruit, P., van der Stam, M.A.J., & Groen, H.B. (2003). Direct fabrication of nanowires in an electron microscope. Appl Phys Lett 82, 35143516.
Tanaka, M., Furuya, K., Takeguchi, M., & Honda, T. (1998). Surface observation of Mo nanocrystals deposited on Si 111 thin films by a newly developed ultrahigh vacuum field-emission transmission electron microscope. Thin Solid Films 319, 110114.
Uhlemann, S. & Haider, M. (1998). Residual wave aberrations in the first spherical aberration corrected transmission electron microscope. Ultramicroscopy 72, 109119.
van Benthem, K., Lupini, A.R., Kim, M., Baik, H.S., Doh, S., Lee, J.H., Oxley, M.P., Findlay, S.D., Allen, L.J., Luck, J.T., & Pennycook, S.J. (2005). Three-dimensional imaging of individual hafnium atoms inside a semiconductor device. Appl Phys Lett 87, (034104) 13.
van der Stam, M., Stekelenburg, M., Freitag, B., Hubert, D., & Ringnalda, J. (2005). A new aberration-corrected transmission electron microscopy for a new era. Microsc Anal 19, 1315.
Varela, M., Findlay, S.D., Lupini, A.R., Christen, H.M., Borisevich, A.Y., Dellby, N., Krivanek, O.L., Nellist, P.D., Oxley, M.P., Allen, L.J., & Pennycook, S.J. (2004). Spectroscopic imaging of single atoms within a bulk solid. Phys Rev Lett 92, (095502) 14.
Yamazaki, T., Kotaka, Y., Kikuchi, Y., & Watanabe, K. (2005). Precise measurement of third-order spherical aberration using low-order zone-axis Ronchigrams. Ultramicroscopy 106, 153163.
Yu, Z., Batson, P.E., & Silcox, J. (2003). Artifacts in aberration-corrected ADF-STEM imaging. Ultramicroscopy 96, 275284.

Keywords

Ultrahigh-Vacuum Third-Order Spherical Aberration (Cs) Corrector for a Scanning Transmission Electron Microscope

  • Kazutaka Mitsuishi (a1), Masaki Takeguchi (a1), Yukihito Kondo (a2), Fumio Hosokawa (a2), Kimiharu Okamoto (a2), Takumi Sannomiya (a2), Madoka Hori (a2), Takeshi Iwama (a2), Muneyuki Kawazoe (a2) and Kazuo Furuya (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed