Skip to main content Accessibility help

True Atomic-Scale Imaging in Three Dimensions: A Review of the Rebirth of Field-Ion Microscopy

  • Francois Vurpillot (a1), Frédéric Danoix (a1), Matthieu Gilbert (a1), Sebastian Koelling (a2), Michal Dagan (a3) and David N. Seidman (a4) (a5)...


This article reviews recent advances utilizing field-ion microscopy (FIM) to extract atomic-scale three-dimensional images of materials. This capability is not new, as the first atomic-scale reconstructions of features utilizing FIM were demonstrated decades ago. The rise of atom probe tomography, and the application of this latter technique in place of FIM has unfortunately severely limited further FIM development. Currently, the ubiquitous availability of extensive computing power makes it possible to treat and reconstruct FIM data digitally and this development allows the image sequences obtained utilizing FIM to be extremely valuable for many material science and engineering applications. This article demonstrates different applications of these capabilities, focusing on its use in physical metallurgy and semiconductor science and technology.


Corresponding author

* Corresponding author.


Hide All
Akré, J., Danoix, F., Leitner, H. & Auger, P. (2009). The morphology of secondary-hardening carbides in a martensitic steel at the peak hardness by 3DFIM. Ultramicroscopy 109, 518523.
Armstrong, D.E.J., Edmondson, P.D. & Roberts, S.G. (2013). Effects of sequential tungsten and helium ion implantation on nano-indentation hardness of tungsten. Appl Phys Lett 102, 251901.
Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298–304.
Beavan, L., Scanlan, R. & Seidman, D. (1971). The defect structure of depleted zones in irradiated tungsten. Acta Metall. 19, 13391350.
Brandon, D.G. (1964). The accurate determination of crystal orientation from field ion micrographs. J Sci Instrum. 41, 373375.
Castell, M.R., Muller, D.A. & Voyles, P.M. (2003). Dopant mapping for the nanotechnology age. Nat Mater. 2, 129131.
Cazottes, S., Vurpillot, F., Fnidiki, A., Lemarchand, D., Baricco, M. & Danoix, F. (2012). Nanometer scale tomographic investigation of fine scale precipitates in a CuFeNi granular system by three-dimensional field ion microscopy. Microsc Microanal 18(5), 11291134.
Cerezo, A., Hetherington, M., Hyde, J., Miller, M. & Smith, G. (1992). Visualisation of three-dimensional microstructures. Surf Sci 280, 471480.
Chen, Y.C. & Seidman, D.N. (1971). Atomic resolution of a field ion microscope. Surf Sci 26, 6184.
Dagan, M., Gault, B., Smith, G., Bagot, P. & Moody, M. (2016). Automated “atom-by-atom” 3D reconstruction of field ion microscopy data. Microsc Microanal, in press.
Dagan, M., Hanna, L.R., Xu, A., Roberts, S.G., Smith, G.D., Gault, B., Edmonson, P.D, Bagot, P.A.J. & Moody, M.P. (2015). Imaging of radiation damage using complementary field ion microscopy and atom probe tomography. Ultramicroscopy 159, 387394.
Danoix, F., Epicier, T., Vurpillot, F. & Blavette, D. (2012). Atomic-scale imaging and analysis of single layer GP zones in a model steel. J Mater Sci 47(3), 15671571.
Drechsler, M. & Wolf, P. (1958). Zur Analyse von Feldionenmikrosop-Aufnahmen mit atomarer Auflösung. In the 4 th International Conference on Electron Microscopy, Berlin, September 10–17, p. 823.
Fortes, M.A., Smith, D.A. & Ralph, B. (1968). Interpretation of field-ion micrographs – Contrast from perfect dislocation loops. Philos Mag 17, 169176.
Gault, B., Moody, P.M., Cairney, J. & Ringer, S. (2012). Atom Probe Microscopy. London: Springer.
Göbel, E.O., Jung, H., Kuhl, J. & Ploog, K. (1983). Recombination enhancement due to carrier localization in quantum well structures. Phys Rev Lett 51, 15881591.
Gomer, R. (1961). Field Emission and Field Ionization. Cambridge: Harvard University Press.
Koelling, S., Richard, O., Bender, H., Uematsu, M., Schulze, A., Zschaetzsch, G., Gilbert, M. & Vanderworst, W. (2013). Direct imaging of 3D atomic-scale dopant-defect clustering processes in ion-implanted silicon. Nano Lett 13(6), 24582462.
Larson, D., Prosa, T., Ulfig, R., Geiser, B. & Kelly, T. (2013). Local Electrode Atom Probe Tomography: A User’s Guide. New York: Springer.
Lefebvre-Ulrikson, W., Vurpillot, F. & Sauvage, X. (2016). Atom Probe Tomography : Put Theory Into practice. London: Elsevier Academic Press.
Loberg, B. & Norden, H. (1973). Regular defect structures in high angle grain boundaries. Acta Metall 21, 213218.
Miller, M. & Forbes, R. (2014). Atom-Probe Tomography: The Local Electrode Atom Probe. New York: Springer.
Müller, E. (1965). Field ion microscopy. Science 149, 591601.
Müller, E.W. & Bahadur, K. (1956). Field ionization of gases at a metal surface and the resolution of the field ion microscope. Phys Rev 102, 624631.
Rademacher, T., Al-Kassab, T. & Kirchheim, R. (2009). The influence of elastic strain on the early stages of decomposition in Cu–1.7 at% Fe. Ultramicroscopy 109, 524529.
Scanlan, R.M., Styris, D.L. & Seidman, D.N. (1974). In-situ field ion microscope study of irradiated tungsten.2. Analysis and interpretation. Philos Mag 23, 14391457.
Schmid, T.E. & Balluffi, R.-W. (1971). Formation and migration of artifact vacancies induced on gold surfaces by neon field ion microscopy. Surf Sci 28, 3236.
Seidman, D.N., Current, M.I., Pramanik, D. & Wei, C.-Y. (1981). Direct observations of the primary state of radiation damage of ion-irradiated tungsten and platinum. Nucl Instrum Methods 182–183, 477481.
Semboshi, S., Al-Kassab, T., Gemma, R. & Kirchheim, R. (2009). Microstructural evolution of Cu-1 at% Ti alloy aged in a hydrogen atmosphere and its relation with the electrical conductivity. Ultramicroscopy 109, 593598.
Smith, D.A., Fortes, M.A., Kelly, A. & Ralph, B. (1968). Contrast from stacking faults and partial dislocations in field-ion microscope. Philos Mag 17, 10651077.
Speicher, C.A., Pimbley, W.T., Attardo, M.J., Galligan, J.M. & Brenner, S.S. (1966). Observation of vacancies in field-ion microscopy. Phys Lett 23, 194.
Stiller, K. & Andrén, H.-O. (1982). Faulty field evaporation at di-vacancies in {222} tungsten. Surf Sci Lett 114, 5761.
Van Tendeloo, G., Van Dyck, D. & Pennycook, S.J. (2012). Handbook of Nanoscopy, Volume 2. Weinheim, Germany: Wiley-VCH.
Vurpillot, F., Gilbert, M. & Deconihout, B. (2007). Towards the three-dimensional field ion microscope. Surf Interface Anal 39, 273277.
Vurpillot, F., Gruber, M., Duguay, S., Cadel, E. & Deconihout, B. (2009). Modeling artifacts in the analysis of test semiconductor structures in atom probe tomography. AIP Conf Proc 1173, 175.
Wiederrecht, G. (2010). Handbook of Nanoscale Optics and Electronics. Amsterdam, The Netherlands: Elsevier – Academic Press.
Xu, R., Chen, C.-C., Wu, L., Scott, M.C., Theis, W., Ophus, C., Bartels, B., Yang, Y., Ramezani-Dakhel, H., Sawaya, M.R., Heinz, H., Marks, L.D., Ercius, P. & Miao, J. (2015). Three-dimensional coordinates of individual atoms in materials revealed by electron tomography. Nat Mater 14, 10991103.


Related content

Powered by UNSILO

True Atomic-Scale Imaging in Three Dimensions: A Review of the Rebirth of Field-Ion Microscopy

  • Francois Vurpillot (a1), Frédéric Danoix (a1), Matthieu Gilbert (a1), Sebastian Koelling (a2), Michal Dagan (a3) and David N. Seidman (a4) (a5)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.