Skip to main content Accessibility help
×
Home

Transmission Electron Microscopy and X-Ray Diffraction Analysis of Aluminum-Induced Crystallization of Amorphous Silicon in α-Si:H/Al and Al/α-Si:H Structures

  • Ram Kishore (a1), C. Hotz (a2), H.A. Naseem (a2) and W.D. Brown (a2)

Abstract

Solid phase crystallization of plasma-enhanced chemical-vapor-deposited (PECVD) amorphous silicon (α-Si:H) in α-Si:H/Al and Al/α-Si:H structures has been investigated using transmission electron microscopy (TEM) and X-ray diffraction (XRD). Radiative heating has been used to anneal films deposited on carbon-coated nickel (Ni) grids at temperatures between 200 and 400°C for TEM studies. α-Si:H films were deposited on c-Si substrates using high vacuum (HV) PECVD for the XRD studies. TEM studies show that crystallization of α-Si:H occurs at 200°C when Al film is deposited on top of the α-Si:H film. Similar behavior was observed in the XRD studies. In the case of α-Si:H deposited on top of Al films, the crystallization could not be observed at 400°C by TEM and even up to 500°C as seen by XRD.

Copyright

Corresponding author

Corresponding author. E-mail: rkishore@mail.nplindia.ernet.in

References

Hide All

REFERENCES

Bian, B., Yie, J., Li, B., & Wu, Z. (1993). Fractal formation in α-Si:H/Ag/α-Si:H films after annealing. J Appl Phys 73, 74027406.
Haque, M.S., Naseem, H.A., & Brown, W.D. (1994). Interaction of aluminum with hydrogenated amorphous silicon at low temperature. J Appl Phys 76, 39283935.
Haque, M.S., Naseem, H.A., & Brown, W.D. (1996). Aluminum-induced crystallization and counter-doping of phosphorous doped hydrogenated amorphous silicon at low temperatures. J Appl Phys 79, 75297536.
Hultman, L., Robertsson, A., Hentzell, H.T.G., Engstrom, I., & Psaras, P.A. (1987). Crystallization of amorphous silicon during thin-film gold reaction. J Appl Phys 62, 36473655.
Ishihara, S. & Hirao, T. (1987). Depth profile measurements of aluminum film on phosphorous-doped hydrogenated amorphous silicon layers by auger electron spectroscopy. Thin Solid Films 55, 325329.
Kim, J.H. & Lee, J.Y. (1996). Al-induced crystallization of amorphous Si thin film in a polycrystalline Al/native SiO2 amorphous Si structure. Jpn J Appl Phys 35, 20522056.
Kishore, R., Hotz, C., Brown, W.D, & Naseem, H.A. (2000). TEM investigations of aluminum induced crystallization of amorphous silicon (α-Si:H). Microsc Microanal 6, 452453.
Kishore, R., Naseem, H.A., & Brown, W.D. (2001a). Aluminum-induced crystallization of amorphous silicon (α-Si:H) at 150°C. Electrochem Solid State Lett 4, G14G16.
Kishore, R., Naseem, H.A., & Brown, W.D. (2001b). TEM of aluminum-induced crystallization of amorphous silicon. Microsc Anal 23, 911.
Konno, T.J. & Sinclair, R. (1992). Crystallization of silicon in aluminum/amorphous-silicon multilayers. Philos Mag B 66, 749765.
Nast, O., Brehme, S., Neuhaus, D.H., & Wenham, S.R. (1999). Polycrystalline silicon thin films on glass by aluminum-induced crystallization. IEEE Trans Electron Devices 46, 20622068.
Nast, O., Puzzer, T., Koschier, L.M., Sproul, A.B., & Wenham, S.R. (1998). Aluminum-induced crystallization of amorphous silicon on glass substrates above and below the eutectic temperature. Appl Phys Lett 73, 32143216.
Russel, S.W., Li, J., & Mayer, J.W. (1991). In situ observation of fractal growth during α-Si crystallization in a Cu3Si matrix. J Appl Phys 70, 51535155.
Yoon, S.Y., Oh, J.Y., Kim, C.O., & Jang, J. (1998). Low temperature solid phase crystallization of amorphous silicon at 380°C. J Appl Phys 84, 64636465.

Keywords

Related content

Powered by UNSILO

Transmission Electron Microscopy and X-Ray Diffraction Analysis of Aluminum-Induced Crystallization of Amorphous Silicon in α-Si:H/Al and Al/α-Si:H Structures

  • Ram Kishore (a1), C. Hotz (a2), H.A. Naseem (a2) and W.D. Brown (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.