Skip to main content Accessibility help
×
Home

Toward Single Mode, Atomic Size Electron Vortex Beams

  • Ondrej L. Krivanek (a1), Jan Rusz (a2), Juan-Carlos Idrobo (a3), Tracy J. Lovejoy (a1) and Niklas Dellby (a1)...

Abstract

We propose a practical method of producing a single mode electron vortex beam suitable for use in a scanning transmission electron microscope (STEM). The method involves using a holographic “fork” aperture to produce a row of beams of different orbital angular momenta, as is now well established, magnifying the row so that neighboring beams are separated by about 1 µm, selecting the desired beam with a narrow slit, and demagnifying the selected beam down to 1–2 Å in size. We show that the method can be implemented by adding two condenser lenses plus a selection slit to a straight-column cold-field emission STEM. It can also be carried out in an existing instrument, the monochromated Nion high-energy-resolution monochromated electron energy-loss spectroscopy-STEM, by using its monochromator in a novel way. We estimate that atom-sized vortex beams with ≥20 pA of current should be attainable at 100–200 keV in either instrument.

Copyright

Corresponding author

* Corresponding author. krivanek@nion.com

References

Hide All
Béché, A., Van Boxem, R., Van Tendeloo, R. & Verbeeck, J. (2014). Magnetic monopole field exposed by electrons. Nat Phys 10, 2629.
Blackburn, A.M. & Loudon, J.C. (2014). Vortex beam production and contrast enhancement from a magnetic spiral phase plate. Ultramicroscopy 136, 127143.
Clark, L., Béché, A., Guzzinati, G., Lubk, A., Mazilu, M., Van Boxem, R. & Verbeeck, J. (2013). Exploiting lens aberrations to create electron vortex beams. Phys Rev Lett 111, 064801.
Dellby, N., Bacon, N.J., Hrncirik, P., Murfitt, M.F., Skone, G.S., Szilagyi, Z.S. & Krivanek, O.L. (2011). Dedicated STEM for 200 to 40 keV operation. Eur Phys J Appl Phys 54, 33505.
Idrobo, J.C. & Pennycook, S.J. (2011). Vortex beams for atomic resolution dichroism. J Electron Microsc 60, 205300.
Kolarik, V., Mankos, M. & Veneklasen, L.H. (1991). Close packed prism arrays for electron microscopy. Optik 87, 112.
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.
Krivanek, O.L., Ursin, J.P., Bacon, N.J., Corbin, G.J., Dellby, N., Hrncirik, P., Mufitt, M.F., Own, C.S. & Szilagyi, Z.S. (2009). High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Phil Trans R Soc A 367, 36833697.
Krivanek, O.L., Chisholm, M.F., Dellby, N. & Murfitt, M.F. (2011). Atomic-resolution STEM at low primary energies. In Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook S.J. & Nellist P.D. (Eds.), pp. 613656. New York: Springer.
Krivanek, O.L., Zhou, W., Chisholm, M.F., Dellby, N., Lovejoy, T.C., Ramasse, Q.M. & Idrobo, J.C. (2013 a). Gentle STEM of single atoms: Low keV imaging and analysis at ultimate detection limits. In Low Voltage Electron Microscopy: Principles and Applications, Bell D.C. & Erdman N. (Eds.), pp. 119152. Hoboken, NJ: Wiley & Sons.
Krivanek, O.L., Lovejoy, T.C., Dellby, N. & Carpenter, R.W. (2013 b). Monochromated STEM with a 30 meV-wide, atom-sized electron probe. Microscopy 62, 321.
McMorran, B.J. (2009). Electron diffraction and interferometry using nanostructures. PhD Thesis, University of Arizona, Tucson, Arizona, pp. 40–42. Available at http://arizona.openrepository.com/arizona/handle/10150/194029
McMorran, B.J., Agrawal, A., Anderson, I.M., Herzing, A.A., Lezec, H.J., McClelland, J.J. & Unguris, J. (2011). Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192195.
Rusz, J. & Bhowmick, S. (2013). Boundaries for efficient use of electron vortex beams to measure magnetic properties. Phys Rev Lett 111, 105504.
Saitoh, K., Hasegawa, Y., Tanaka, N. & Uchida, M. (2012). Production of electron vortex beams carrying large orbital angular momentum using spiral zone plates. J Electron Microsc 61, 171177.
Schattschneider, P., Rubino, S., Hébert, C., Rusz, J., Kunes, J., Novák, P., Carlino, E., Fabrizioli, M., Panaccione, G. & Rossi, G. (2006). Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486488.
Schattschneider, P., Stöger-Pollach, M., Löffler, S., Steiger-Thirsfeld, A., Hell, J. & Verbeeck, J. (2012). Sub-nanometer free electrons with topological charge. Ultramicroscopy 115, 2125.
Tromp, R.M., Hannon, J.B., Ellis, A.W., Wan, W., Berghaus, A. & Schaff, O. (2010). A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design. Ultramicroscopy 110, 852861.
Uchida, M. & Tonomura, A. (2010). Generation of electron beams carrying orbital angular momentum. Nature 464, 737739.
Verbeeck, J., Tian, H. & Schattschneider, P. (2010). Production and application of electron vortex beams. Nature 467, 301304.
Verbeeck, J., Schattschneider, P., Lazar, S., Stöger-Pollach, M., Löffler, S., Steiger-Thirsfeld, A. & Van Tendeloo, G. (2011). Atomic scale electron vortices for nanoresearch. Appl Phys Lett 99, 203109.
Verbeeck, J., Tian, H. & Béché, A. (2012). A new way of producing electron vortex probes for STEM. Ultramicroscopy 113, 8387.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed