Skip to main content Accessibility help

Toward Single Mode, Atomic Size Electron Vortex Beams

  • Ondrej L. Krivanek (a1), Jan Rusz (a2), Juan-Carlos Idrobo (a3), Tracy J. Lovejoy (a1) and Niklas Dellby (a1)...


We propose a practical method of producing a single mode electron vortex beam suitable for use in a scanning transmission electron microscope (STEM). The method involves using a holographic “fork” aperture to produce a row of beams of different orbital angular momenta, as is now well established, magnifying the row so that neighboring beams are separated by about 1 µm, selecting the desired beam with a narrow slit, and demagnifying the selected beam down to 1–2 Å in size. We show that the method can be implemented by adding two condenser lenses plus a selection slit to a straight-column cold-field emission STEM. It can also be carried out in an existing instrument, the monochromated Nion high-energy-resolution monochromated electron energy-loss spectroscopy-STEM, by using its monochromator in a novel way. We estimate that atom-sized vortex beams with ≥20 pA of current should be attainable at 100–200 keV in either instrument.


Corresponding author

* Corresponding author.


Hide All
Béché, A., Van Boxem, R., Van Tendeloo, R. & Verbeeck, J. (2014). Magnetic monopole field exposed by electrons. Nat Phys 10, 2629.
Blackburn, A.M. & Loudon, J.C. (2014). Vortex beam production and contrast enhancement from a magnetic spiral phase plate. Ultramicroscopy 136, 127143.
Clark, L., Béché, A., Guzzinati, G., Lubk, A., Mazilu, M., Van Boxem, R. & Verbeeck, J. (2013). Exploiting lens aberrations to create electron vortex beams. Phys Rev Lett 111, 064801.
Dellby, N., Bacon, N.J., Hrncirik, P., Murfitt, M.F., Skone, G.S., Szilagyi, Z.S. & Krivanek, O.L. (2011). Dedicated STEM for 200 to 40 keV operation. Eur Phys J Appl Phys 54, 33505.
Idrobo, J.C. & Pennycook, S.J. (2011). Vortex beams for atomic resolution dichroism. J Electron Microsc 60, 205300.
Kolarik, V., Mankos, M. & Veneklasen, L.H. (1991). Close packed prism arrays for electron microscopy. Optik 87, 112.
Krivanek, O.L., Corbin, G.J., Dellby, N., Elston, B.F., Keyse, R.J., Murfitt, M.F., Own, C.S., Szilagyi, Z.S. & Woodruff, J.W. (2008). An electron microscope for the aberration-corrected era. Ultramicroscopy 108, 179195.
Krivanek, O.L., Ursin, J.P., Bacon, N.J., Corbin, G.J., Dellby, N., Hrncirik, P., Mufitt, M.F., Own, C.S. & Szilagyi, Z.S. (2009). High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Phil Trans R Soc A 367, 36833697.
Krivanek, O.L., Chisholm, M.F., Dellby, N. & Murfitt, M.F. (2011). Atomic-resolution STEM at low primary energies. In Scanning Transmission Electron Microscopy: Imaging and Analysis, Pennycook S.J. & Nellist P.D. (Eds.), pp. 613656. New York: Springer.
Krivanek, O.L., Zhou, W., Chisholm, M.F., Dellby, N., Lovejoy, T.C., Ramasse, Q.M. & Idrobo, J.C. (2013 a). Gentle STEM of single atoms: Low keV imaging and analysis at ultimate detection limits. In Low Voltage Electron Microscopy: Principles and Applications, Bell D.C. & Erdman N. (Eds.), pp. 119152. Hoboken, NJ: Wiley & Sons.
Krivanek, O.L., Lovejoy, T.C., Dellby, N. & Carpenter, R.W. (2013 b). Monochromated STEM with a 30 meV-wide, atom-sized electron probe. Microscopy 62, 321.
McMorran, B.J. (2009). Electron diffraction and interferometry using nanostructures. PhD Thesis, University of Arizona, Tucson, Arizona, pp. 40–42. Available at
McMorran, B.J., Agrawal, A., Anderson, I.M., Herzing, A.A., Lezec, H.J., McClelland, J.J. & Unguris, J. (2011). Electron vortex beams with high quanta of orbital angular momentum. Science 331, 192195.
Rusz, J. & Bhowmick, S. (2013). Boundaries for efficient use of electron vortex beams to measure magnetic properties. Phys Rev Lett 111, 105504.
Saitoh, K., Hasegawa, Y., Tanaka, N. & Uchida, M. (2012). Production of electron vortex beams carrying large orbital angular momentum using spiral zone plates. J Electron Microsc 61, 171177.
Schattschneider, P., Rubino, S., Hébert, C., Rusz, J., Kunes, J., Novák, P., Carlino, E., Fabrizioli, M., Panaccione, G. & Rossi, G. (2006). Detection of magnetic circular dichroism using a transmission electron microscope. Nature 441, 486488.
Schattschneider, P., Stöger-Pollach, M., Löffler, S., Steiger-Thirsfeld, A., Hell, J. & Verbeeck, J. (2012). Sub-nanometer free electrons with topological charge. Ultramicroscopy 115, 2125.
Tromp, R.M., Hannon, J.B., Ellis, A.W., Wan, W., Berghaus, A. & Schaff, O. (2010). A new aberration-corrected, energy-filtered LEEM/PEEM instrument. I. Principles and design. Ultramicroscopy 110, 852861.
Uchida, M. & Tonomura, A. (2010). Generation of electron beams carrying orbital angular momentum. Nature 464, 737739.
Verbeeck, J., Tian, H. & Schattschneider, P. (2010). Production and application of electron vortex beams. Nature 467, 301304.
Verbeeck, J., Schattschneider, P., Lazar, S., Stöger-Pollach, M., Löffler, S., Steiger-Thirsfeld, A. & Van Tendeloo, G. (2011). Atomic scale electron vortices for nanoresearch. Appl Phys Lett 99, 203109.
Verbeeck, J., Tian, H. & Béché, A. (2012). A new way of producing electron vortex probes for STEM. Ultramicroscopy 113, 8387.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed