Skip to main content Accessibility help

A Tool for Local Thickness Determination and Grain Boundary Characterization by CTEM and HRTEM Techniques

  • Ákos K. Kiss (a1) (a2), Edgar F. Rauch (a3), Béla Pécz (a1), János Szívós (a1) (a2) and János L. Lábár (a1)...


A new approach for measurement of local thickness and characterization of grain boundaries is presented. The method is embodied in a software tool that helps to find and set sample orientations useful for high-resolution transmission electron microscopic (HRTEM) examination of grain boundaries in polycrystalline thin films. The novelty is the simultaneous treatment of the two neighboring grains and orienting both grains and the boundary plane simultaneously. The same metric matrix-based formalism is used for all crystal systems. Input into the software tool includes orientation data for the grains in question, which is determined automatically for a large number of grains by the commercial ASTAR program. Grain boundaries suitable for HRTEM examination are automatically identified by our software tool. Individual boundaries are selected manually for detailed HRTEM examination from the automatically identified set. Goniometer settings needed to observe the selected boundary in HRTEM are advised by the software. Operation is demonstrated on examples from cubic and hexagonal crystal systems.


Corresponding author

* Corresponding author.


Hide All
Diamond, R. (2001). Molecular modelling and graphics. In International Tables for Crystallography, vol. B, 2nd ed. Shmueli, U. (Ed.), p. 360. Dordrecht, Boston, MA, and London: Kluwer Academic Publishers.
Dingley, D.J. (2006). Orientation imaging microscopy for the transmission electron microscope. Microchim Acta 155, 1929.
Duden, T., Gautam, A. & Dahmen, U. (2011). KSpaceNavigator as a tool for computer-assisted sample tilting in high-resolution imaging, tomography and defect analysis. Ultramicroscopy 111, 15741580.
Edington, J.W. (1975). 2 Electron Diffraction in the Electron Microscope. Eindhoven: N. V. Phillips’ Gloeilampenfabriken.
Edington, J.W. (1976). 4 Typical Electron Microscope Investigations. Eindhoven: N. V. Phillips’ Gloeilampenfabriken.
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed. New York, NY, Dordrecht, Heidelberg, and London: Springer Science+Business Media.
Egerton, R.F., Li, P. & Malac, M. (2004). Radiation damage in the TEM and SEM. Micron 35, 399409.
Forwood, C.T. & Clarebrough, L.M. (1991). Electron Microscopy of Interfaces in Metals and Alloys. Bristol and New York: IOP Publishing. p. 113. (figure 4.8).
Gontard, L.C., Dunin-Borkowski, R.E. & Ozkaya, D. (2008). Three-dimensional shapes and spatial distributions of Pt and PtCr catalyst nanoparticles on carbon black. J Microsc 232, 248259.
Gorelik, T.E., Stewart, A.A. & Kolb, U. (2011). Structure solution with automated electron diffraction tomography data: Different instrumental approaches. J Microsc 244, 325331.
Grimmer, H., Bollmann, W. & Warrington, D.H. (1974). Coincidence-site lattices and complete pattern-shift in cubic crystals. Acta Crystallogr A 30, 197207.
Habas, S.E., Lee, H., Radmilovic, V., Somorjai, G.A. & Yang, P. (2007). Shaping binary metal nanocrystals through epitaxial seeded growth. Nat Mater 6, 692697.
Hovmöller, S. (2008). Electron Rotation Camera. Patent WO 2008/060237.
Jinschek, J.R., Batenburg, K.J., Calderon, H.A., Kilaas, R., Radmilovic, V. & Kisielowski, C. (2008). 3-D reconstruction of the atomic positions in a simulated gold nanocrystal based on discrete tomography: Prospects of atomic resolution electron tomography. Ultramicroscopy 108, 589604.
Kelly, P.M., Jostsons, A., Blake, R.G. & Napier, J.G. (1975). The determination of foil thickness by scanning transmission electron microscopy. Phys Status Solidi 31(2), 771780.
Kiss, Á.K. & Lábár, J.L. (2013). A method for complete characterization of the macroscopic geometry of grain boundaries. Mater Sci Forum 729, 97102.
Kolb, U., Gorelik, T., Kübel, C., Otten, M.T. & Hubert, D. (2007). Towards automated diffraction tomography: Part I—Data acquisition. Ultramicroscopy 107, 507513.
Kolb, U., Gorelik, T. & Otten, M.T. (2008). Towards automated diffraction tomography. Part II—Cell parameter determination. Ultramicroscopy 108, 763772.
Kolb, U., Mugnaioli, E. & Gorelik, T.E. (2011). Automated electron diffraction tomography—A new tool for nano crystal structure analysis. Cryst Res Technol 46, 542554.
Ku, H.H. (1966). Notes on the use of propagation of error formulas. J Res NBS C Eng Inst 70(4), 263273.
Lábár, J.L. (2005). Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program. Ultramicroscopy 103(3), 237249.
Lábár, J.L., Kiss, Á.K., Christiansen, S. & Falk, F. (2012). Characterization of grain boundary geometry in the TEM, exemplified in Si thin films. Solid State Phenom 186, 712.
Li, X.Z. (2004). JECP/SP: A computer program for generating stereographic projections, applicable to specimen orientation adjustment in TEM experiments. J Appl Crystallogr 37(3), 506507.
Lloyd, G.E., Farmer, A. & Mainprice, D. (1997). Misorientation analysis and the formation and orientation of subgrain and grain boundaries. Tectonophysics 279, 5578.
Loretto, M.H. & Smallman, R.E. (1975). Defect Analysis in Electron Microscopy. London: Chapman and Hall Ltd.
Murr, L.E. (1973). Twin boundary energetics in pure aluminium. Acta Metall 21(6), 791797.
Otten, M.T. (1996). SmartTilt: The sensible way of tilting. Proceedings of the Annual Meeting – Electron Microscopy Society of America, 8, 452453.
Pozsgai, I. (1997). The determination of foil thickness by scanning transmission electron microscopy. Ultramicroscopy 68(1), 6975.
Randle, V. (1993). The Measurement of Grain Boundary Geometry. London: The Institute of Physics Publishing. (eq. 2.17).
Randle, V. (2001). A methodology for grain boundary plane assessment by single-section trace analysis. Scripta Mater 44, 27892794.
Rauch, E.F., Véron, M., Portillo, J., Bultreys, D., Maniette, Y. & Nicolopoulos, S. (2008). Automatic crystal orientation and phase mapping in TEM by precession diffraction. Microsc Microanal 22(6), S5S8.
Saylor, D.M., El-Dasher, B.S., Adams, B.L. & Rohrer, G.S. (2004). Measuring the five-parameter grain-boundary distribution from observations of planar sections. Metall Mater Trans A 35, 19811989.
Saylor, D.M., Morawiec, A. & Rohrer, G.S. (2003). Distribution of grain boundaries in magnesia as a function of five macroscopic parameters. Acta Mater 51, 36633674.
Schwarzer, R.A. & Sukkau, J. (1998). Automated crystal orientation mapping (ACOM) with a computer controlled TEM by interpreting transmission Kikuchi patterns. Mater Sci Forum 273–275, 215222.
Spence, J.C.H. & Zuo, J.M. (1992). Electron Diffraction. New York, NY: Plenum Press. (Appendix 3.7).
Stadelmann, P.A. (1987). EMS—A software package for electron diffraction analysis and HREM image simulation in materials science. Ultramicroscopy 21, 131146.
Van Aert, S., Batenburg, K.J., Rossell, M.D., Erni, R. & Van Tendeloo, G. (2011). Three-dimensional atomic imaging of crystalline nanoparticles. Nature 470, 374377.
Wan, W., Sun, J., Su, J., Hovmöller, S. & Zou, X. (2013). Three-dimensional rotation electron diffraction: Software RED for automated data collection and data processing. J Appl Crystallogr 46(6), 18631873.
Wang, L. (1993). Computer control of the electron microscope sample stage. US Patent, US 5179280 A.
Wu, G. & Zaefferer, S. (2009). Advances in TEM orientation microscopy by combination of dark-field conical scanning and improved image matching. Ultramicroscopy 109, 13171325.
Zaefferer, S. (2000). New developments of computer-aided crystallographic analysis in transmission electron microscopy. J Appl Crystallogr 33, 1025.


A Tool for Local Thickness Determination and Grain Boundary Characterization by CTEM and HRTEM Techniques

  • Ákos K. Kiss (a1) (a2), Edgar F. Rauch (a3), Béla Pécz (a1), János Szívós (a1) (a2) and János L. Lábár (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.