Skip to main content Accessibility help

Thickness Variations and Absence of Lateral Compositional Fluctuations in Aberration-Corrected STEM Images of InGaN LED Active Regions at Low Dose

  • Andrew B. Yankovich (a1), Alexander V. Kvit (a1), Xing Li (a2), Fan Zhang (a2), Vitaliy Avrutin (a2), Huiyong Liu (a2), Natalia Izyumskaya (a2), Ümit Özgür (a2), Brandon Van Leer (a3), Hadis Morkoç (a2) and Paul M. Voyles (a1)...


Aberration-corrected scanning transmission electron microscopy images of the In0.15Ga0.85N active region of a blue light-emitting diode, acquired at ~0.1% of the electron dose known to cause electron beam damage, show no lateral compositional fluctuations, but do exhibit one to four atomic plane steps in the active layer’s upper boundary. The area imaged was measured to be 2.9 nm thick using position averaged convergent beam electron diffraction, ensuring the sample was thin enough to capture compositional variation if it was present. A focused ion beam prepared sample with a very large thin area provides the possibility to directly observe large fluctuations in the active layer thickness that constrict the active layer at an average lateral length scale of 430 nm.


Corresponding author

* Corresponding author.


Hide All
Arif, R.A., Ee, Y.-K. & Tansu, N. (2007). Polarization engineering via staggered InGaN quantum wells for radiative efficiency enhancement of light emitting diodes. Appl Phys Lett 91, 091110.
Bartel, T.P., Specht, P., Ho, J.C. & Kisielowski, C. (2007). Phase separation in In x Ga 1−x N. Philos Mag 87, 19831998.
Cho, H.K., Lee, J.Y., Sharma, N., Humphreys, C.J., Yang, G.M., Kim, C.S., Song, J.H. & Yu, P.W. (2001). Effect of growth interruptions on the light emission and indium clustering of InGaN/GaN multiple quantum wells. Appl Phys Lett 79, 2594.
Costa, P.M.F.J., Datta, R., Kappers, M.J., Vickers, M.E., Humphreys, C.J., Graham, D.M., Dawson, P., Godfrey, M.J., Thrush, E.J. & Mullins, J.T. (2006). Misfit dislocations in In-rich InGaN/GaN quantum well structures. Phys Status Solidi (a) 203, 17291732.
Egerton, R.F. (1996). Electron Energy-Loss Spectroscopy in the Electron Microscope , 2nd ed. New York, USA: Springer.
El-Masry, N.A., Piner, E.L., Liu, S.X. & Bedair, S.M. (1998). Phase separation in InGaN grown by metalorganic chemical vapor deposition. Appl Phys Lett 72, 4042.
Giannuzzi, L.A. & Stevie, F.A. (2005). Introduction to Focused Ion Beams: Instrumentation, Theory , Techniques and Practice. New York, USA: Springer.
Hartel, P., Rose, H. & Dinges, C. (1996). Conditions and reasons for incoherent imaging in STEM. Ultramicroscopy 63, 93114.
Ho, I. & Stringfellow, G.B. (1996). Solid phase immiscibility in GaInN. Appl Phys Lett 69, 2701.
Humphreys, C.J. (2007). Does In form In-rich clusters in InGaN quantum wells? Philos Mag 87, 19711982.
Iakoubovskii, K., Mitsuishi, K., Nakayama, Y. & Furuya, K. (2008). Thickness measurements with electron energy loss spectroscopy. Microsc Res Tech 71, 626631.
Kirkland, E.J. (1998). Advanced Computing in Electron Microscopy, 1st ed. New York, USA: Springer.
Kret, S., Dłużewski, P., Szczepańska, A., Zak, M., Czernecki, R., Kryśko, M., Leszczyński, M. & Maciejewski, G. (2007). Homogenous indium distribution in InGaN/GaN laser active structure grown by LP-MOCVD on bulk GaN crystal revealed by transmission electron microscopy and X-ray diffraction. Nanotechnology 18, 465707.
Kret, S., Ivaldi, F., Sobczak, K., Czernecki, R. & Leszczyński, M. (2010). Inhomogeneities of InGaN/GaN MOVPE multi quantum wells grown with a two temperatures process studied by transmission electron microscopy. Phys Status Solidi (a) 207, 11011104.
LeBeau, J.M., D’Alfonso, A.J., Wright, N.J., Allen, L.J. & Stemmer, S. (2011). Determining ferroelectric polarity at the nanoscale. Appl Phys Lett 98, 052904.
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110, 118125.
Li, X., Liu, H.Y., Liu, S., Ni, X., Wu, M., Avrutin, V., Izyumskaya, N., Özgür, Ü. & Morkoç, H. (2010). InGaN based light emitting diodes with Ga doped ZnO as transparent conducting oxide. Phys Status Solidi (a) 207, 19931996.
Mutta, G.R., Ruterana, P., Doualan, J.L., Chauvat, M.P., Ivaldi, F., Kret, S., Kaufmann, N.A.K., Dussaigne, A., Martin, D. & Grandjean, N. (2011). Investigation of the In composition in InGaN/GaN quantum wells deposited by MOVPE and/or MBE with emission from violet to green. Phys Status Solidi (b) 248, 11871190.
Narukawa, Y., Kawakami, Y., Funato, M., Fujita, S., Fujita, S. & Nakamura, S. (1997). Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm. Appl Phys Lett 70, 981.
Oliver, R.A., Galtrey, M.J. & Humphreys, C.J. (2008). High resolution transmission electron microscopy and three-dimensional atom probe microscopy as complementary techniques for the high spatial resolution analysis of GaN based quantum well systems. Mater Sci Technol 24, 675681.
Park, C.G., Gu, G.H., Lee, B.H. & Jang, D.H. (2013). Effects of growth pressure on the structural and optical properties of multi quantum wells (MQWs) in blue LED. Ultramicroscopy 127, 114118.
Powell, R.G., Lee, N., Kim, Y. & Greene, J.E. (1993). Heteroepitaxial by reactlve-ion wurtzite and zinc-blende structure GaN grown molecular-beam epitaxy: Growth kinetics, and properties. J Appl Phys 73, 189204.
Reshchikov, M.A. & Morkocç, H. (2005). Luminescence properties of defects in GaN. J Appl Phys 97, 061301.
Rosenauer, A., Mehrtens, T., Müller, K., Gries, K., Schowalter, M., Satyam, P.V., Bley, S., Tessarek, C., Hommel, D., Sebald, K., Seyfried, M., Gutowski, J., Avramescu, A., Engl, K. & Lutgen, S. (2011). Composition mapping in InGaN by scanning transmission electron microscopy. Ultramicroscopy 111, 13161327.
Ruterana, P., Kret, S., Vivet, A., Maciejewski, G. & Dluzewski, P. (2002). Composition fluctuation in InGaN quantum wells made from molecular beam or metalorganic vapor phase epitaxial layers. J Appl Phys 91, 8979.
Sharma, N., Thomas, P., Tricker, D. & Humphreys, C. (2000). Chemical mapping and formation of V-defects in InGaN multiple quantum wells. Appl Phys Lett 77, 1274.
Singh, R., Doppalapudi, D., Moustakas, T.D. & Romano, L.T. (1997). Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition. Appl Phys Lett 70, 1089.
Smeeton, T.M., Kappers, M.J., Barnard, J.S., Vickers, M.E. & Humphreys, C.J. (2003). Electron-beam-induced strain within InGaN quantum wells: False indium “cluster” detection in the transmission electron microscope. Appl Phys Lett 83, 5419.
Van der Laak, N.K., Oliver, R.A., Kappers, M.J. & Humphreys, C.J. (2007). Characterization of InGaN quantum wells with gross fluctuations in width. J Appl Phys 102, 013513.
Voyles, P.M., Grazul, J.L. & Muller, D.A. (2003). Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251273.
Wu, Z.H., Fischer, A.M., Ponce, F.A., Lee, W., Ryou, J.H., Limb, J., Yoo, D. & Dupuis, R.D. (2007). Effect of internal electrostatic fields in InGaN quantum wells on the properties of green light emitting diodes. Appl Phys Lett 91, 041915.
Xie, J., Özgür, Ü., Fu, Y., Ni, X., Morkoç, H., Inoki, C.K., Kuan, T.S., Foreman, J.V. & Everitt, H.O. (2007). Low dislocation densities and long carrier lifetimes in GaN thin films grown on a SiNx nanonetwork. Appl Phys Lett 90, 041107.
Xiong, X. & Moss, S.C. (1997). X-ray studies of defects and thermal vibrations in an organometallic vapor phase epitaxy grown GaN thin film. J Appl Phys 82, 2308.
Yankovich, A.B., Kvit, A.V., Li, X., Zhang, F., Avrutin, V., Liu, H.Y., Izyumskaya, N., Özgür, Ü., Morkoç, H. & Voyles, P.M. (2012). Absence of lateral composition fluctuations in aberration-corrected STEM images of an InGaN quantum well at low dose. MRS Proceedings 1432, mrss121432g0403.
Zhang, L., Cheng, K., Liang, H., Lieten, R., Leys, M. & Borghs, G. (2012). Photoluminescence studies of polarization effects in InGaN/(In)GaN multiple quantum well structures. Jpn J Appl Phys 51, 030207.
Zhao, H., Liu, G., Zhang, J., Poplawsky, J.D., Dierolf, V. & Tansu, N. (2011). Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum wells. Opt Express 19(Suppl 4), A991A1007.


Type Description Title
Supplementary materials

Yankovich Supplementary Material
Figure 1

 Unknown (35.1 MB)
35.1 MB

Thickness Variations and Absence of Lateral Compositional Fluctuations in Aberration-Corrected STEM Images of InGaN LED Active Regions at Low Dose

  • Andrew B. Yankovich (a1), Alexander V. Kvit (a1), Xing Li (a2), Fan Zhang (a2), Vitaliy Avrutin (a2), Huiyong Liu (a2), Natalia Izyumskaya (a2), Ümit Özgür (a2), Brandon Van Leer (a3), Hadis Morkoç (a2) and Paul M. Voyles (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed