Skip to main content Accessibility help

Texture Analyses Show Synergetic Effects of Biomechanical and Biochemical Stimulation on Mesenchymal Stem Cell Differentiation into Early Phase Osteoblasts

  • So Hee Park (a1), Ji Won Shin (a2), Yun Gyeong Kang (a1), Jin-Sook Hyun (a1), Min Jae Oh (a1) and Jung-Woog Shin (a1) (a2) (a3)...


We investigated the structural complexity and texture of the cytoskeleton and nucleus in human mesenchymal stem cells during early phase differentiation into osteoblasts according to the differentiation–induction method: mechanical and/or chemical stimuli. For this, fractal dimension and a number of parameters utilizing the gray-level co-occurrence matrix (GLCM) were calculated based on single-cell images after confirmation of differentiation by immunofluorescence staining. The F-actin and nuclear fractal dimensions were greater in both stimulus groups compared with the control group. The GLCM values for energy and homogeneity were lower in fibers of the F-actin cytoskeleton, indicating a dispersed F-actin arrangement during differentiation. In the nuclei of both stimulus groups, higher values for energy and homogeneity were calculated, indicating that the chromatin arrangement was chaotic during the early phase of differentiation. It was shown and confirmed that combined stimulation with mechanical and chemical factors accelerated differentiation, even in the early phase. Fractal dimension analysis and GLCM methods have the potential to provide a framework for further investigation of stem cell differentiation.


Corresponding author

* Corresponding author. E-mail:


Hide All
Bai, K., Huang, Y., Jia, X., Fan, Y. & Wang, W. (2010). Endothelium oriented differentiation of bone marrow mesenchymal stem cells under chemical and mechanical stimulations. J Biomech 43, 11761181.
Born, A.K., Rottmar, M., Lischer, S., Pleskova, M., Bruinink, A. & Maniura-Weber, K. (2009). Correlating cell architecture with osteogenesis: First steps towards live single cell monitoring. Eur Cell Mater 18, 4960.
Dahl, K.N., Ribeiro, A.J. & Lammerding, J. (2008). Nuclear shape, mechanics, and mechanotransduction. Circ Res 102, 13071318.
Engler, A.J., Sen, S., Sweeney, H.L. & Discher, D.E. (2006). Matrix elasticity directs stem cell lineage specification. Cell 126, 677689.
Fuseler, J.W., Millette, C.F., Davis, J.M. & Carver, W. (2007). Fractal and image analysis of morphological changes in the actin cytoskeleton of neonatal cardiac fibroblasts in response to mechanical stretch. Microsc Microanal 13, 133143.
Ghazanfari, S., Tafazzoli-Shadpour, M. & Shokrgozar, M.A. (2009). Effects of cyclic stretch on proliferation of mesenchymal stem cells and their differentiation to smooth muscle cells. Biochem Biophys Res Commun 388, 601605.
Haralick, R.M., Shanmugam, K. & Dinstein, I. (1973). Textural features for image classification. IEEE Trans SMC-3, 610621.
Joffe, B., Leonhardt, H. & Solovei, I. (2010). Differentiation and large scale spatial organization of the genome. Curr Opin Genet Dev 20, 562569.
Kearney, E.M., Farrell, E., Prendergast, P.J. & Campbell, V.A. (2010). Tensile strain as a regulator of mesenchymal stem cell osteogenesis. Ann Biomed Eng 38, 17671779.
Kim, J.H., Cho, C.S., Chung, Y.H., Lim, K., Son, H., Seonwoo, H., Baik, S., Jeon, S., Park, J., Choung, P. & Chung, J. (2009). Mechanical stimulation of mesenchymal stem cells for tissue engineering. Tissue Eng Regen Med 6, 199206.
Kolf, C.M., Cho, E. & Tuan, R.S. (2007). Biology of adult mesenchymal stem cells: Regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9, 204214.
Liao, S., Chan, C.K. & Ramakrishna, S. (2008). Stem cells and biomimetic materials strategies for tissue engineering. Mater Sci Eng C 28, 11891202.
Loganathan, R., Potetz, B.R., Rongish, B.J. & Little, C.D. (2012). Spatial anisotropies and temporal fluctuations in extracellular matrix network texture during early embryogenesis. PLoS ONE 7, e38266.
Losa, G.A. & Castelli, C. (2005). Nuclear patterns of human breast cancer cells during apoptosis: Characterisation by fractal dimension and co-occurrence matrix statistics. Cell Tissue Res 322, 257267.
Mathieu, P.S. & Loboa, E.G. (2012). Cytoskeletal and focal adhesion influences on mesenchymal stem cell shape, mechanical properties, and differentiation down osteogenic, adipogenic, and chondrogenic pathway. Tissue Eng Part B Rev 18, 436444.
Metze, K. (2010). Fractal dimension of chromatin and cancer prognosis. Epigenomics 2, 601604.
Mohd Khuzi, A., Besar, R., Wan Zaki, W. & Ahmad, N. (2009). Identification of masses in digital mammogram using gray level co-occurrence matrices. Biomed Imaging Interv J 5, e17.
Morandi, F., Raffaghello, L., Bianchi, G., Meloni, F., Salis, A., Millo, E., Ferrone, S., Barnaba, V. & Pistoia, V. (2008). Immunogenicity of human mesenchymal stem cells in HLA-class I restricted T cell responses against viral or tumor-associated antigens. Stem Cells 26, 12751287.
Pantic, I. & Pantic, S. (2012). Germinal center texture entropy as possible indicator of humoral immune response: Immunophysiology viewpoint. Mol Imaging Biol 14, 534540.
Pantic, I., Pantic, S. & Basta-Jovanovic, G. (2012). Gray level co-occurrence matrix texture analysis of germinal center light zone lymphocyte nuclei: Physiology viewpoint with focus on apoptosis. Microsc Microanal 18, 470475.
Qi, Y., Wang, X., Zhang, P. & Jiang, Z. (2010). Fractal and image analysis of cytoskeletal F-actin organization in endothelial cells under shear stress and rho-GDIα knock down. IFMBE 31, 10511054.
Qian, A.R., Li, D., Han, J., Gao, X., Di, S.M., Zhang, W., Hu, L.F. & Shang, P. (2012). Fractal dimension as a measure of altered actin cytoskeleton in MC3T3-E1 cells under simulated microgravity using 3-D/2-D clinostats. IEEE Trans Biomed Eng 59, 13741380.
Rodríguez, J.P., González, M., Ríos, S. & Cambiazo, V. (2004). Cytoskeletal organization of human mesenchymal stem cells (MSC) changes during their osteogenic differentiation. J Cell Biochem 93, 721731.
Rosenbaum, A.J., Grande, D.A. & Dines, J.S. (2008). The use of mesenchymal stem cells in tissue engineering. Organogenesis 4, 2327.
Sedivy, R., Thurner, S., Budinsky, A.C., Köstler, W.J. & Zielinski, C.C. (2002). Short-term rhythmic proliferation of human breast cancer cell lines: Surface effects and fractal growth patterns. J Pathol 197, 163169.
Shelton, L. & Rada, J.S. (2007). Effects of cyclic mechanical stretch on extracellular matrix synthesis by human scleral fibroblasts. Exp Eye Res 84, 314322.
Titushkin, I. & Cho, M. (2007). Modulation of cellular mechanics during osteogenic differentiation of human mesenchymal stem cells. Biophys J 93, 36933702.
Titushkin, I. & Cho, M. (2011). Altered osteogenic commitment of human mesenchymal stem cells by ERM protein-dependent modulation of cellular biomechanics. J Biomech 44, 26922698.
Tuan, R.S., Boland, G. & Tuli, R. (2002). Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res Ther 5, 3245.
Zulpe, N. & Pawar, V. (2012). GLCM textural features for brain tumor classification. IJ CSI 9, 354359.


Texture Analyses Show Synergetic Effects of Biomechanical and Biochemical Stimulation on Mesenchymal Stem Cell Differentiation into Early Phase Osteoblasts

  • So Hee Park (a1), Ji Won Shin (a2), Yun Gyeong Kang (a1), Jin-Sook Hyun (a1), Min Jae Oh (a1) and Jung-Woog Shin (a1) (a2) (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed