Skip to main content Accessibility help
×
Home

T Lymphocyte Migration to Lymph Nodes Is Maintained during Homeostatic Proliferation

  • Masanari Kodera (a1), Jamison J. Grailer (a1), Andrew P-A. Karalewitz (a1), Hariharan Subramanian (a1) and Douglas A. Steeber (a1)...

Abstract

The immune system maintains appropriate cell numbers through regulation of cell proliferation and death. Normal tissue distribution of lymphocytes is maintained through expression of specific adhesion molecules and chemokine receptors such as L-selectin and CCR7, respectively. Lymphocyte insufficiency or lymphopenia induces homeostatic proliferation of existing lymphocytes to increase cell numbers. Interestingly, homeostatic proliferation of T lymphocytes induces a phenotypic change from naïve- to memory-type cell. Naïve T cells recirculate between blood and lymphoid tissues whereas memory T cells migrate to nonlymphoid sites such as skin and gut. To assess effects of homeostatic proliferation on migratory ability of T cells, a murine model of lymphopenia-induced homeostatic proliferation was used. Carboxyfluorescein diacetate, succinimidyl ester-labeled wild-type splenocytes were adoptively transferred into recombination activation gene-1-deficient mice and analyzed by flow cytometry, in vitro chemotactic and in vivo migration assays, and immunofluorescence microscopy. Homeostatically proliferated T cells acquired a mixed memory-type CD44high L-selectinhigh CCR7low phenotype. Consistent with this, chemotaxis to secondary lymphoid tissue chemokine in vitro was reduced by 22%–34%. By contrast, no differences were found for migration or entry into lymph nodes during in vivo migration assays. Therefore, T lymphocytes that have undergone homeostatic proliferation recirculate using mechanisms similar to naïve T cells.

Copyright

Corresponding author

Corresponding author. E-mail: Steeber@uwm.edu

References

Hide All
Abernethy, N.J., Hay, J.B., Kimpton, W.G., Washington, E. & Cahill, R.N.P. (1991). Lymphocyte subset-specific and tissue-specific lymphocyte-endothelial cell recognition mechanisms independently direct the recirculation of lymphocyes from the blood to lymph in sheep. Immunology 72, 239245.
Arbones, M.L., Ord, D.C., Ley, K., Radich, H., Maynard-Curry, C., Capon, D.J. & Tedder, T.F. (1994). Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity 1, 247260.
Au, B., McCulloch, C.A. & Hay, J.B. (2002). Quantitative studies on the movement of fluid and lymphocytes through periodontal tissue and into the draining lymph. Microsc Res Technol 56, 6671.
Baccala, R. & Theofilopoulos, A.N. (2005). The new paradigm of T-cell homeostatic proliferation-induced autoimmunity. Trends Immunol 26, 58.
Bajenoff, M., Granjeaud, S. & Guerder, S. (2003). The strategy of T cell antigen-presenting cell encounter in antigen-draining lymph nodes revealed by imaging of initial T cell activation. J Exp Med 198, 715724.
Bender, J., Mitchell, T., Kappler, J. & Marrack, P. (1999). CD4+ T cell division in irradiated mice requires peptides distinct from those responsible for thymic selection. J Exp Med 190, 367374.
Berg, E.L., Robinson, M.K., Warnock, R.A. & Butcher, E.C. (1991). The human peripheral lymph node vascular addressin is a ligand for LECAM-1, the peripheral lymph node homing receptor. J Cell Biol 114, 343349.
Bradley, L.M., Atkins, G.G. & Swain, S.S. (1992). Long-term memory CD4+ T cells from spleen lack MEL-14, the lymph node homing receptor. J Immunol 148, 324331.
Bromley, S.K., Thomas, S.Y. & Luster, A.D. (2005). Chemokine receptor CCR7 guides T cell exit from peripheral tissues and entry into afferent lymphatics. Nat Immunol 6, 895901.
Cahalan, M.D., Parker, I., Wei, S.H. & Miller, M.J. (2002). Two-photon tissue imaging: Seeing the immune system in a fresh light. Nat Rev Immunol 2, 872880.
Campbell, D.J. & Butcher, E.C. (2002). Rapid acquisition of tissue-specific homing phenotypes by CD4+ T cells activated in cutaneous or mucosal lymphoid tissues. J Exp Med 195, 135141.
Campbell, D.J., Kim, C.H. & Butcher, E.C. (2003). Chemokines in the systemic organization of immunity. Immunol Rev 195, 5871.
Chao, C.C., Jensen, R. & Dailey, M.O. (1997). Mechanisms of L-selectin regulation by activated T cells. J Immunol 159, 16861694.
Chen, A., Engel, P. & Tedder, T.F. (1995). Structural requirements regulate endoproteolytic release of the L-selectin (CD62L) adhesion receptor from the cell surface of leukocytes. J Exp Med 182, 519530.
Cho, B.K., Rao, V.P., Ge, Q., Eisen, H.N. & Chen, J. (2000). Homeostasis-stimulated proliferation drives naive T cells to differentiate directly into memory T cells. J Exp Med 192, 549556.
Cho, Y. & De Bruyn, P.P.H. (1986). Internal structure of the postcapillary high-endothelial venules of rodent lymph nodes and Peyer's patches and the transendothelial lymphocyte passage. Am J Anat 177, 481490.
Cinalli, R.M., Herman, C.E., Lew, B.O., Wieman, H.L., Thompson, C.B. & Rathmell, J.C. (2005). T cell homeostasis requires G protein-coupled receptor-mediated access to trophic signals that promote growth and inhibit chemotaxis. Eur J Immunol 35, 786795.
Cose, S., Brammer, C., Khanna, K.M., Masopust, D. & Lefrancois, L. (2006). Evidence that a significant number of naive T cells enter non-lymphoid organs as part of a normal migratory pathway. Eur J Immunol 36, 14231433.
Dai, Z. & Lakkis, F.G. (2001). Cutting edge: Secondary lymphoid organs are essential for maintaining the CD4, but not CD8, naive T cell pool. J Immunol 167, 67116715.
D'Apuzzo, M., Rolink, A., Loetscher, M., Hoxie, J.A., Clark-Lewis, I., Melchers, F., Baggiolini, M. & Moser, B. (1997). The chemokine SDF-1, stromal cell derieved factor 1, attracts early stage B cells precusors via chemokine receptor CXCR4. Eur J Immunol 27, 17881793.
DeGrendele, H.C., Estess, P. & Siegelman, M.H. (1997). Requirement for CD44 in activated T cell extravasation into an inflammatory site. Science 278, 672675.
del Hoyo, G.M., Martin, P., Arias, C.F., Marin, A.R. & Ardavin, C. (2002). CD8a+ dendritic cells originate from the CD8a dendritic cell subset by a maturation process involving CD8a, DEC-205, and CD24 up-regulation. Blood 99, 9991004.
Dustin, M.L., Rothlein, R., Bhan, A.K., Dinarello, C.A. & Springer, T.A. (1986). Induction by IL 1 and interferon-γ: Tissue distribution, biochemistry, and function of a natural adherence molecule (ICAM-1). J Immunol 137, 245253.
Elices, M.J., Osborn, L., Takada, Y., Crouse, C., Luhowskyj, S., Hemler, M.E. & Lobb, R.R. (1990). VCAM-1 on activated endothelium interacts with the leukocyte integrin VLA-4 at a site distinct from the VLA-4/fibronectin binding site. Cell 60, 577584.
Ernst, B., Lee, D.S., Chang, J.M., Sprent, J. & Surh, C.D. (1999). The peptide ligands mediating positive selection in the thymus control T cell survival and homeostatic proliferation in the periphery. Immunity 11, 173181.
Forster, R., Mattis, A.E., Kremmer, E., Wolf, E., Brem, G. & Lipp, M. (1996). A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell 87, 10371047.
Forster, R., Schubel, A., Breitfeld, D., Kremmer, E., Renner-Muller, I., Wolf, E. & Lipp, M. (1999). CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell 99, 2333.
Galkina, E., Tanousis, K., Preece, G., Tolaini, M., Kioussis, D., Florey, O., Haskard, D.O., Tedder, T.F. & Ager, A. (2003). L-selectin shedding does not regulate constitutive T cell trafficking but controls the migration pathways of antigen-activated T lymphocytes. J Exp Med 198, 13231335.
Gallatin, W.M., Weissman, I.L. & Butcher, E.C. (1983). A cell-surface molecule involved in organ-specific homing of lymphocytes. Nature 304, 3034.
Goldrath, A.W., Bogatzki, L.Y. & Bevan, M.J. (2000). Naive T cells transiently acquire a memory-like phenotype during homeostasis-driven proliferation. J Exp Med 192, 557564.
Goldschneider, I. & McGregor, D.D. (1968). Migration of lymphocytes and thymocytes in the rat I. The route of migration from blood to spleen and lymph nodes. J Exp Med 127, 155168.
Gowans, J.L. (1959). The recirculation of lymphocytes from blood to lymph in the rat. J Physiol 146, 5469.
Gowans, J.L. & Knight, E.J. (1964). The route of recirculation of lymphocytes in the rat. Proc Roy Soc Lond B 159, 257282.
Gretz, J.E., Anderson, A.O. & Shaw, S. (1997). Cords, channels, corridors and conduits: Critical architectural elements facilitating cell interactions in the lymph node cortex. Immunol Rev 156, 1124.
Gunn, M.D., Tangemann, K., Tam, C., Cyster, J.G., Rosen, S.D. & Williams, L.T. (1998). A chemokine expressed in lymphoid high endothelial venules promotes the adhesion and chemotaxis of naive T lymphocytes. Proc Natl Acad Sci USA 95, 258263.
Hall, J.G. & Morris, B. (1965). The origin of the cells in the efferent lymph from a single lymph node. J Exp Med 121, 901910.
Hazelrigg, M.R., Hirsch, J.I. & Merchant, R.E. (2002). Distribution of adoptively transferred, tumor-sensitized lymphocytes in the glioma-bearing rat. J Neurooncol 60, 143150.
Huang, A.Y.C., Qi, H. & Germain, R.N. (2004). Illuminating the landscape of in vivo immunity: Insights from dynamic in situ imaging of secondary lymphoid tissues. Immunity 21, 331339.
Jameson, S.C. (2002). Maintaining the norm: T-cell homeostasis. Nat Rev Immunol 2, 547556.
Jung, T.M., Gallatin, W.M., Weissman, I.L. & Dailey, M.O. (1988). Down-regulation of homing receptors after T cell activation. J Immunol 141, 41104117.
Katakai, T., Hara, T., Lee, J.-H., Gonda, H., Sugai, M. & Shimizu, A. (2004). A novel reticular stromal structure in lymph node cortex: An immuno-platform for interactions among dendritic cells, T cells and B cells. Int Immunol 16, 11331142.
Keramidaris, E., Merson, T.D., Steeber, D.A., Tedder, T.F. & Tang, M.L.K. (2001). L-selectin and intercellular adhesion molecule 1 mediate lymphocyte migration to the inflamed airway/lung during an allergic inflammatory response in an animal model of asthma. J Allergy Clin Immunol 107, 734738.
Kieper, W.C., Troy, A., Burghardt, J.T., Ramsey, C., Lee, J.Y., Jiang, H.-Q., Dummer, W., Shen, H., Cebra, J.J. & Surh, C.D. (2005). Cutting edge: Recent immune status determines the source of antigens that drive homeostatic T cell expansion. J Immunol 174, 31583163.
Kim, C.H. & Broxmeyer, H.E. (1999). Chemokines: Signal lamps for trafficking of T and B cells for development and effector function. J Leukoc Biol 65, 615.
Kodera, M., Conway, R.M., Subramanian, H., Venturi, G.M. & Steeber, D.A. (2006). L-selectin- and β7 integrin-mediated recirculation is required for homeostatic proliferation of CD4+ and CD8+ T cells. J Immunol 176, S295.
Lefrancois, L. (2006). Development, trafficking, and function of memory T-cell subsets. Immunol Rev 211, 93103.
Lefrancois, L. & Masopust, D. (2002). T cell immunity in lymphoid and non-lymphoid tissues. Curr Opin Immunol 14, 503508.
Lesley, J., Hyman, R. & Kincade, P.W. (1993). CD44 and its interaction with extracellular matrix. Adv Immunol 54, 271335.
Ley, K. & Kansas, G.S. (2004). Selectins in T-cell recruitment to non-lymphoid tissues and sites of inflammation. Nat Rev Immunol 4, 325335.
Luettig, B., Pape, L., Bode, U., Bell, E.B., Sparshott, S.M., Wagner, S. & Westermann, J. (1999). Naive and memory T lymphocytes migrate in comparable numbers through normal rat liver: Activated T cells accumulate in the periportal field. J Immunol 163, 43004307.
Lyons, A.B. (1999). Divided we stand: Tracking cell proliferation with carboxyfluorescein diacetate succinimidyl ester. Immunol Cell Biol 77, 509515.
Lyons, A.B. & Parish, C.R. (1994). Determination of lymphocyte division by flow cytometry. J Immunol Meth 171, 131137.
MacDonald, H.R., Budd, R.C. & Cerottini, J.-C. (1989). Pgp-1 (Ly 24) as a marker of murine memory T lymphocytes. Curr Top Microbiol Immunol 159, 97109.
Mackay, C.R. (1991). T-cell memory: The connection between function, phenotype and migration pathways. Immunol Today 12, 189192.
Mackay, C.R., Marston, W. & Dudler, L. (1992a). Altered patterns of T cell migration through lymph nodes and skin following antigen challenge. Eur J Immunol 22, 22052210.
Mackay, C.R., Marston, W.L. & Dudler, L. (1990). Naive and memory T cells show distinct pathways of lymphocyte recirculation. J Exp Med 171, 801817.
Mackay, C.R., Marston, W.L., Dudler, L., Spertini, O., Tedder, T.F. & Hein, W.R. (1992b). Tissue-specific migration pathways by phenotypically distinct subpopulations of memory T cells. Eur J Immunol 22, 887895.
Makgoba, M.M., Sanders, M.E., Ginther Luce, G.E., Dustin, M.L., Springer, T.A., Clark, E.A., Mannoni, P. & Shaw, S. (1988). ICAM-1: A ligand for LFA-1 dependent adhesion of B, T, and myeloid cells. Nature 331, 8688.
Marchesi, V.T. & Gowans, J.L. (1964). The migration of lymphocytes through the endothelium of venules in lymph nodes: An electron microscopic study. Proc Roy Soc Ser B 159, 283290.
Marleau, A.M. & Sarvetnick, N. (2005). T cell homeostasis in tolerance and immunity. J Leukoc Biol 78, 575584.
Masopust, D., Vezys, V., Marzo, A.L. & Lefrancois, L. (2001). Preferential localization of effector memory cells in nonlymphoid tissue. Science 291, 24132417.
Masopust, D., Vezys, V., Usherwood, E.J., Cauley, L.S., Olson, S., Marzo, A.L., Ward, R.L., Woodland, D.L. & Lefrancois, L. (2004). Activated primary and memory CD8 T cells migrate to nonlymphoid tissues regardless of site of activation or tissue of origin. J Immunol 172, 48754882.
Maury, S., Salomon, B., Klatzmann, D. & Cohen, J.L. (2001). Division rate and phenotypic differences discriminate alloreactive and nonalloreactive T cells transferred in lethally irradiated mice. Blood 98, 31563158.
Miller, M.J., Wei, S.H., Parker, I. & Cahalan, M.D. (2002). Two-photon imaging of lymphocyte motility and antigen response in intact lymph node. Science 296, 18691873.
Mobley, J.L. & Dailey, M.O. (1992). Regulation of adhesion molecule expression by CD8 T cells in vivo. I. Differential regulation of gp90MEL14 (LECAM-1), Pgp-1, LFA-1, and VLA-4a during the differentiation of CTL induced by allografts. J Immunol 148, 23482356.
Mombaerts, P., Iacomini, J., Johnson, R.S., Herrup, K., Tonegawa, S. & Papaioannou, V.E. (1992). RAG-1 deficient mice have no mature B and T lymphocytes. Cell 68, 869877.
Murali-Krishna, K. & Ahmed, R. (2000). Cutting edge: Naive T cells masquerading as memory cells. J Immunol 165, 17331737.
Nolte, M.A., Kraal, G. & Mebius, R.E. (2004). Effects of fluorescent and nonfluorescent tracing methods on lymphocyte migration in vivo. Cytometry 61A, 3544.
Okada, T., Ngo, V.N., Ekland, E.H., Forster, R., Lipp, M., Littman, D.R. & Cyster, J.G. (2002). Chemokine requirements for B cell entry to lymph nodes and Peyer's patches. J Exp Med 196, 6575.
Parish, C.R. (1999). Fluorescent dyes for lymphocyte migration and proliferation studies. Immunol Cell Biol 77, 499508.
Picker, L.J. & Butcher, E.C. (1992). Physiological and molecular mechanisms of lymphocyte homing. Annu Rev Immunol 10, 561591.
Ploix, C., Lo, D. & Carson, M.J. (2001). A ligand for the chemokine receptor CCR7 can influence the homeostatic proliferation of CD4 T cells and progression of autoimmunity. J Immunol 167, 67246730.
Pribila, J.T., Quale, A.C., Mueller, K.L. & Shimizu, Y. (2004). Integrins and T cell-mediated immunity. Annu Rev Immunol 22, 157180.
Sallusto, F., Lenig, D., Forster, R., Lipp, M. & Lanzavecchia, A. (1999). Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401, 708712.
Salmi, M., Tohka, S. & Jalkanen, S. (2000). Human vascular adhesion protein-1 (VAP-1) plays a critical role in lymphocyte-endothelial cell adhesion cascade under shear. Circ Res 86, 12451251.
Schoefl, G.I. (1972). The migration of lymphocytes across the vascular endothelium in lymphoid tissue. A reexamination. J Exp Med 136, 568588.
Scimone, M.L., Felbinger, T.W., Mazo, I.B., Stein, J.V., Von Andrian, U.H. & Weninger, W. (2004). CXCL12 mediates CCR7-independent homing of central memory cells, but not naive T cells, in peripheral lymph nodes. J Exp Med 199, 11131120.
Shimizu, Y., Rose, D.M. & Ginsberg, M.H. (1999). Integrins and the immune response. Adv Immunol 72, 325380.
Singbartl, K., Thatte, J., Smith, M.L., Wethmar, K., Day, K. & Ley, K. (2001). A CD2-green fluorescence protein-transgenic mouse reveals very late antigen-4-dependent CD8+ lymphocyte rolling in inflamed venules. J Immunol 166, 75207526.
Springer, T.A. (1994). Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell 76, 301314.
Stamper, H.B. Jr. & Woodruff, J.J. (1976). Lymphocyte homing into lymph nodes: In vitro demonstration of the selective affinity of recirculating lymphocytes for high-endothelial venules. J Exp Med 144, 828833.
Steeber, D.A., Engel, P., Miller, A.S., Sheetz, M.P. & Tedder, T.F. (1997). Ligation of L-selectin through conserved regions within the lectin domain activates signal transduction pathways and integrin function in human, mouse, and rat leukocytes. J Immunol 159, 952963.
Steeber, D.A., Green, N.E., Sato, S. & Tedder, T.F. (1996). Lymphocyte migration in L-selectin-deficient mice: Altered subset migration and aging of the immune system. J Immunol 157, 10961106.
Steeber, D.A. & Tedder, T.F. (2000). Adhesion molecule cascades direct lymphocyte recirculation and leukocyte migration during inflammation. Immunol Res 22, 299317.
Stein, J.V., Rot, A., Luo, Y., Narasimhaswamy, M., Nakano, H., Gunn, M.D., Matsuzawa, A., Quackenbush, E.J., Dorf, M.E. & von Andrian, U.H. (2000). The CC chemokine thymus-derived chemokine agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J Exp Med 191, 6175.
Stoll, S., Delon, J., Brotz, T.M. & Germain, R.N. (2002). Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296, 18731876.
Streeter, P.R., Rouse, B.T.N. & Butcher, E.C. (1988). Immunohistologic and functional characterization of a vascular addressin involved in lymphocyte homing into peripheral lymph nodes. J Cell Biol 107, 18531862.
Sumen, C., Mempel, T.R., Mazo, I.B. & Von Andrian, U.H. (2004). Intravital microscopy: Visualizing immunity in context. Immunity 21, 315329.
Tan, J.T., Dudl, E., LeRoy, E., Murray, R., Sprent, J., Weinberg, K.I. & Surh, C.D. (2001). IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA 98, 87328737.
Tang, M.L.K., Steeber, D.A., Zhang, X.-Q. & Tedder, T.F. (1998). Intrinsic differences in L-selectin expression levels affect T and B lymphocyte subset-specific recirculation pathways. J Immunol 160, 51135121.
Tedder, T.F., Penta, A.C., Levine, H.B. & Freedman, A.S. (1990). Expression of the human leukocyte adhesion molecule, LAM1. Identity with the TQ1 and Leu-8 differentiation antigens. J Immunol 144, 532540.
van Montfrans, C., Bennink, R.J., de Bruin, K., de Jonge, W., Verberne, H.J., ten Kate, F.J.W., van Deventer, S.J.H. & te Velde, A.A. (2004). In vivo evaluation of 111In-labeled T-lymphocyte homing in experimental colitis. J Nucl Med 45, 17591765.
Venturi, G.M., Conway, R.M., Steeber, D.A. & Tedder, T.F. (2007). CD25+CD4+ regulatory T cell migration requires L-selectin expression: L-selectin transcriptional regulation balances constitutive receptor turnover. J Immunol 178, 291300.
Venturi, G.M., Tu, L., Kadono, T., Khan, A.I., Fujimoto, Y., Oshel, P., Bock, C.B., Miller, A.S., Albrecht, R.M., Kubes, P., Steeber, D.A. & Tedder, T.F. (2003). Leukocyte migration is regulated by L-selectin endoproteolytic release. Immunity 19, 713724.
Westermann, J. & Pabst, R. (1996). How organ-specific is the migration of “naive” and “memory” T lymphocytes? Immunol Today 17, 278282.
Young, A.J., Marston, W.L. & Dudler, L. (2000). Subset-specific regulation of the lymphatic exit of recirculating lymphocytes in vivo. J Immunol 165, 31683174.
Zatz, M.M. & Lance, E.M. (1971). The distribution of 51Cr-labeled lymphocytes into antigen-stimulated mice. Lymphocyte trapping. J Exp Med 134, 224241.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed