Skip to main content Accessibility help
×
Home

Structural Investigation of AlN/SiO x Nanocomposite Hard Coatings Fabricated by Differential Pumping Cosputtering

  • Masahiro Kawasaki (a1), Masateru Nose (a2), Ichiro Onishi (a3) and Makoto Shiojiri (a4)

Abstract

AlN/SiO x nanocomposite coatings fabricated by differential pumping cosputtering (DPCS) were investigated by analytical electron microscopy. The DPCS system consists of two halves of a Chamber, A and B, for radio frequency (RF) magnetron sputtering deposition of different materials, and a substrate holder that rotates through the chambers. Al and SiO2 were sputtered in gas environments with a flow mixture of N2 and Ar gases at RF power of 200 W in the Al Chamber A and a flow of Ar gas at RF powers of 49 W in the SiO2 Chamber B. The substrates of (001) Si wafers heated at 250°C were rotated for 1,080 min at 3 rpm and alternately deposited by AlN and SiO2. AlN columnar crystals grew at a rate of ~0.3 nm/revolution preferentially along the hexagonal [0001] axis. Amorphous silicon oxide (a-SiO x ), deposited at a rate of ~0.2 nm/revolution, was coagulated preferentially along the boundaries between the AlN columns and also the interfaces between the subgrains within the AlN columns. The a-SiO x played an important role in the increase in mechanical hardness of the AlN/SiO x composite coating by disturbing deformation of AlN crystal lattices.

Copyright

Corresponding author

* Corresponding author. kawasaki@jeol.com; shiojiri@pc4.so-net.ne.jp

Footnotes

Hide All

Current address: 1-297 Wakiyama, Kyoto 618-0091, Japan.

Footnotes

References

Hide All
Battaglin, G., Cattaruzza, E., Gonella, F., Polloni, R., Scremin, B.F., Mattei, G., Mazzoldi, P. & Sada, C. (2002). Structural and optical properties of Cu:silica nanocomposite films prepared by co-sputtering deposition. Appl Surf Sci 226, 5256.
Chen, M.J., Shih, Y.T., Wu, M.K., Chen, H.C., Tsai, H.L., Li, W.C., Yang, J.R., Kuan, H. & Shiojiri, M. (2010). Structure and ultraviolet electroluminescence of n-ZnO/SiO2-ZnO nanocomposite/p-GaN heterostructure light-emitting diodes. IEEE Trans Electron Devices 57, 21952202.
Chen, Y.Y., Yang, J.R., Cheng, S.L. & Shiojiri, M. (2013). Structural investigation of ZnO:Al films deposited on the Si substrates by radio frequency magnetron sputtering. Thin Solid Films 545, 183187.
Fujimori, H., Mitani, S. & Ohnuma, S. (1996). Tunnel-type GMR in Co-Al-O insulated granular system—Its oxygen-concentration dependence. J Magn Magn Mater 156, 311314.
Holubář, P., Jílek, M. & Šíma, M. (1999). Nanocomposite nc-TiAlSiN and nc-TiN–BN coatings: Their applications on substrates made of cemented carbide and results of cutting tests. Surf Coat Technol 120/121, 184188.
Hsieh, J.H., Chang, C.C., Chang, Y.K. & Cherng, J.S. (1995). Photocatalytic and antibacterial properties of TaON–Ag nanocomposite thin films. Thin Solid Films 518, 72637266.
Kawasaki, M., Nose, M., Onishi, I., Matsuda, K. & Shiojiri, M. (2015). Cr(Al)N/Al2O3 superhard coatings prepared by differential pumping cosputtering: Structure and mechanical properties. Metallogr Microstruct Anal 4, 459466.
Kawasaki, M., Nose, M., Onishi, I. & Shiojiri, M. (2013 a). Structure of multilayered Cr(Al)N/SiOx nanocomposite coatings fabricated by differential pumping co-sputtering. Appl Phys Lett 103, 201913/1201913/4.
Kawasaki, M., Takabatake, H., Onishi, I., Nose, M. & Shiojiri, M. (2013 b). Structural investigation of Cr(Al)N/SiOx films prepared on Si substrates by differential pumping co-sputtering. ACS Appl Mater Interfaces 5, 38333838.
Kong, M., Zhao, W., Wu, Y., Huang, B. & Li, G. (2012). Microstructure, mechanical properties, and high-temperature oxidation resistance of AlN/SiO2 nanomultilayer coatings. J Coat Technol Res 9, 177182.
Lin, J., Moore, J.J., Moerbe, W.C., Pinkas, M., Mishra, B., Doll, G.L. & Sproul, W.D. (2010). Structure and properties of selected (Cr–Al–N, TiC–C, Cr–B–N) nanostructured tribological coatings. Int J Refract Metals Hard Mater 28, 214.
Martinu, L. & Poitras, D. (2000). Plasma deposition of optical films and coatings: A review. J Vac Sci Technol A 18, 26192645.
Mitani, S., Fujimori, H., Furukawa, S. & Ohnuma, S. (1995). High electrical resistivity and Mössbauer effect of soft magnetic FeSiO2 granular alloys. J Magn Magn Mater 140/144, 429430.
Musil, J. (2006). Physical and mechanical properties of hard nanocomposite films prepared by reactive magnetron sputtering. In Nanostructured Coatings (chapter 10 Cabaleiro, A.A. & De Hosson, J.T.M. (Eds.), pp. 407463. New York: Springer.
Nakamura, S., Senoh, M., Nagahara, S., Iwase, N., Yamada, T., Matsushita, T., Kiyoku, H., Sugimoto, Y., Kozaki, T., Umemoto, H., Sano, M. & Chocho, K. (1998). InGaN/GaN/AlGaN-based laser diodes with modulation-doped strained-layer superlattices grown on an epitaxially laterally overgrown GaN substrate. Appl Phys Lett 72, 211213.
Niederhofer, A., Nesládek, P., Männling, H.-D., Moto, K., Vepřek, S. & Jílek, M. (1999). Structural properties, internal stress and thermal stability of nc-TiN/a-Si3N4, nc-TiN/TiSix and nc-(Ti1− yAlySix)N superhard nanocomposite coatings reaching the hardness of diamond. Surf Coat Technol 120/121, 173178.
Nose, M., Kawabata, T., Watanuki, T., Ueda, S., Fujii, K., Matsuda, K. & Ikeno, S. (2011). Mechanical properties and oxidation resistance of CrAlN/BN nanocomposite coatings prepared by reactive dc and rf cosputtering. Surf Coat Technol 205, s33s37.
Nose, M., Kurimoto, T., Saiki, A., Matsuda, K. & Terayama, K. (2012 a). Deposition of novel nanocomposite films by a newly developed differential pumping co-sputtering system. J Vac Sci Technol A 30, 011502/1011502/7.
Nose, M., Chiou, W.A., Takabatake, H., Satoh, T., Kawabata, T. & Matsuda, K. (2012 b). TEM study of AlN/oxides (SiO x or Al x O y ) nanocomposite films prepared by a differential pumping co-sputtering system. Microsc Microanal 18(Suppl 2), 16961697.
Oelhafen, P. & Schüler, A. (2005). Nanostructured materials for solar energy conversion. Sol Energy 79, 110121.
Sella, C., Chenot, S., Reillon, V. & Berthier, S. (2009). Influence of the deposition conditions on the optical absorption of Ag–SiO2 nanocermet thin films. Thin Solid Films 517, 58485854.
Shiojiri, M., Čeh, M., Šturm, S., Chuo, C.C., Hsu, J.T., Yang, J.R. & Saijo, H. (2006). Structural and compositional analysis of a strained AlGaN/GaN superlattice. J Appl Phys 100, 013110/1013110/7.
Stüber, M., Albers, U., Leiste, H., Seemann, K., Ziebert, C. & Ulrich, S. (2008). Magnetron sputtering of hard Cr–Al–N–O thin films. Surf Coat Technol 203, 661665.
Tiwaary, M., Singh, N.K., Annapoorni, S., Agarwal, D.C., Avasthi, D.K., Mishra, Y.K., Mazzoldi, P., Mattei, G., Sada, C., Trave, E. & Battaglin, G. (2011). Enhancement of photoluminescence in Er-doped Ag–SiO2 nanocomposite thin films: A post annealing study. Vacuum 85, 806809.
Veprek, S. & Veprek-Heijman, M.G.J. (2006). Concept for the design of superhard nanocomposites with high thermal stability: Their preparation, properties, and industrial applications. In Nanostructured Coatings (chapter 9 Cabaleiro, A.A. & De Hosson, J.T.M. (Eds.), pp. 347406. New York: Springer.
Wang, C.M., Hsieh, J.H., Fu, Y.Q., Li, C., Chen, T.P. & Lam, U.T. (2004). Electrical properties of TaN–Cu nanocomposite thin films. Ceram Int 30, 18791883.
Watanabe, K., Yang, J.R., Nakanishi, N., Inoke, K. & Shiojiri, M. (2002). Direct determination of atomic structure in MQW-InGaN/GaN. Appl Phys Lett 80, 761762.

Keywords

Structural Investigation of AlN/SiO x Nanocomposite Hard Coatings Fabricated by Differential Pumping Cosputtering

  • Masahiro Kawasaki (a1), Masateru Nose (a2), Ichiro Onishi (a3) and Makoto Shiojiri (a4)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed