Skip to main content Accessibility help
×
Home

Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM)

  • Ryan J. Wu (a1), Anudha Mittal (a1), Michael L. Odlyzko (a1) and K. Andre Mkhoyan (a1)

Abstract

Sub-angstrom scanning transmission electron microscopy (STEM) allows quantitative column-by-column analysis of crystalline specimens via annular dark-field images. The intensity of electrons scattered from a particular location in an atomic column depends on the intensity of the electron probe at that location. Electron beam channeling causes oscillations in the STEM probe intensity during specimen propagation, which leads to differences in the beam intensity incident at different depths. Understanding the parameters that control this complex behavior is critical for interpreting experimental STEM results. In this work, theoretical analysis of the STEM probe intensity reveals that intensity oscillations during specimen propagation are regulated by changes in the beam’s angular distribution. Three distinct regimes of channeling behavior are observed: the high-atomic-number (Z) regime, in which atomic scattering leads to significant angular redistribution of the beam; the low-Z regime, in which the probe’s initial angular distribution controls intensity oscillations; and the intermediate-Z regime, in which the behavior is mixed. These contrasting regimes are shown to exist for a wide range of probe parameters. These results provide a new understanding of the occurrence and consequences of channeling phenomena and conditions under which their influence is strengthened or weakened by characteristics of the electron probe and sample.

Copyright

Corresponding author

* Corresponding author. mkhoyan@umn.edu

References

Hide All
Borisevich, A.Y., Lupini, A.R. & Pennycook, S.J. (2006). Depth sectioning with the aberration-corrected scanning transmission electron microscope. Proc Natl Acad Sci U S A 103, 30443048.
Cowley, J.M. & Moodie, A.F. (1957). The scattering of electrons by atoms and crystals: A new theoretical approach. Acta Crystallogr A 10, 609619.
D’Alfonso, A.J., Findlay, S.D., Oxley, M.P., Pennycook, S.J., van Benthem, K. & Allen, L.J. (2007). Depth sectioning in scanning transmission electron microscopy based on core-loss spectroscopy. Ultramicroscopy 108, 1728.
Davey, W.P. (1925). Precision measurements of the lattice constants of twelve common metals. Phys Rev Lett 25, 753761.
Egerton, R.F. (2011). Electron Energy Loss Spectroscopy in the Electron Microscope, 3rd ed. New York: Springer.
Ewald, P. P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann Phys 369, 253287.
Fertig, J. & Rose, H. (1981). Resolution and contrast of crystalline objects in high-resolution scanning transmission electron microscopy. Optik 59, 407429.
Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G.L., Cococcioni, M., Dabo, I., Corso, A.D., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Smogunov, A.P., Umari, P. & Wentzcovitch, R.M. (2009). QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21, 399502.
Haruta, M., Kurata, H., Komatsu, H., Shimakawa, Y. & Isoda, S. (2009). Effects of electron channeling in HAADF-STEM intensity in La2CuSnO6 . Ultramicroscopy 109, 361367.
Hillyard, S., Loane, R.F. & Silcox, J. (1993). Annular dark-field imaging: Resolution and thickness effects. Ultramicroscopy 49, 1425.
Hillyard, S. & Silcox, J. (1993). Thickness effects in ADF STEM zone axis images. Ultramicroscopy 52, 325334.
Hillyard, S. & Silcox, J. (1995). Detector geometry, thermal diffuse scattering and strain effects in ADF STEM imaging. Ultramicroscopy 58, 617.
Hovden, R., Xin, H.L. & Muller, D.A. (2012). Channeling of a subangstrom electron beam in a crystal mapped to two-dimensional molecular orbitals. Phys Rev B 86, 195415.
Hwang, J., Zhang, J.Y., D’Alfonso, A.J., Allen, L.J. & Stemmer, S. (2013). Three-dimensional imaging of individual dopant atoms in SrTiO3 . Phys Rev Lett 111, 266101.
Ishikawa, R., Lupini, A.R., Findlay, S.D., Taniguchi, T. & Pennycook, S.J. (2014). Three-dimensional location of a single dopant with atomic precision by aberration corrected scanning transmission electron microscopy. Nano Lett 14, 19031908.
Kambe, K., Lehmpfuhl, G. & Fujimoto, F. (1974). Interpretation of electron channeling by the dynamical theory of electron diffraction. Z Naturforschung 29, 10341044.
Kirkland, E.J. (2010). Advanced Computing in Electron Microscopy, 2nd ed New York: Springer.
Komaki, K. & Fujimoto, F. (1974). Quantized rosette motion of energetic electron around an atomic row in crystal. Phys Lett A 49, 445446.
Kourkoutis, L.F., Parker, M.K., Vaithyanathan, V., Schlom, D.G. & Muller, D.A. (2011). Direct measurement of electron channeling in a crystal using scanning transmission electron microscopy. Phys Rev B 84, 075485.
Kreiner, H.J., Bell, F., Sizmann, R., Harder, D. & Hüttl, W. (1970). Rosette motion in negative particle channelling. Phys Lett A 33, 135136.
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100, 206101.
LeBeau, J.M., Findlay, S.D., Wang, X., Jacobson, A.J., Allen, L.J. & Stemmer, S. (2009). High-angle scattering of fast electrons from crystals containing heavy elements. Phys Rev B 79, 214110.
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010). Standardless atom counting in scanning transmission electron microscopy. Nano Lett 10, 44054408.
Lindhard, J. (1965). Influence of crystal lattice on the motion of energetic charged particles. Kongel Dan Vidensk Selsk Mat Fys Medd 34, 14.
Loane, R.F., Kirkland, E.J. & Silcox, J. (1988). Visibility of single heavy atoms on thin crystalline silicon in simulated annular dark-field STEM images. Acta Crystallogr Sect A 44, 912927.
Loane, R.F., Xu, P. & Silcox, J. (1991). Thermal vibrations in convergent-beam electron diffraction. Acta Crystallogr A 47, 267278.
Lugg, N.R., Findlay, S.D., Shibata, N., Mizoguchi, T., D’Alfonso, A.J., Allen, L.J. & Ikuhara, Y. (2011). Scanning transmission electron microscopy imaging dynamics at low accelerating voltages. Ultramicroscopy 111, 9991013.
Mittal, A. (2013). A theoretical study of dopant atom detection and probe behavior in STEM. PhD Thesis. University of Minnesota, Minneapolis, MN.
Mittal, A. & Mkhoyan, K.A. (2011). Limits in detecting an individual dopant atom embedded in a crystal. Ultramicroscopy 111, 11011110.
Mkhoyan, K.A., Maccagnano-Zacher, S.E., Kirkland, E.J. & Silcox, J. (2008). Effects of amorphous layers on ADF-STEM imaging. Ultramicroscopy 108, 791803.
Nellist, P.D. & Pennycook, S.J. (1999). Incoherent imaging using dynamically scattered coherent electrons. Ultramicroscopy 78, 111124.
Odlyzko, M.L., Held, J.T. & Mkhoyan, K.A. (2016). Atomic bonding effects in annular dark field scanning transmission electron microscopy. II. Experiments. J Vac Sci Technol A 34, 041603.
Op de Beeck, M. & Van Dyck, D. (1996). Direct structure reconstruction in HRTEM. Ultramicroscopy 64, 153165.
Pennycook, S.J. (1988). Delocalization corrections for electron channeling analysis. Ultramicroscopy 26, 239248.
Pennycook, S.J. & Jesson, D.E. (1991). High-resolution Z-contrast imaging of crystals. Ultramicroscopy 37, 1438.
Perdew, J.P., Burke, K. & Ernzerhof, M. (1996). Generalized gradient approximation made simple. Phys Rev Lett 77, 38653868.
Schowalter, M., Rosenauer, A., Titantah, J.T. & Lamoen, D. (2009). Computation and parametrization of the temperature dependence of Debye-Waller factors for group IV, III-V, and II-VI semiconductors. Acta Crystallogr A 65, 517.
Sinkler, W. & Marks, L.D. (1999). A simple channelling model for HREM contrast transfer under dynamical conditions. J Microsc 194, 112123.
Tsyganov, E.N. (1976). Some aspects of the mechanism of a charge particle penetration through a monocrystal. In Fermilab. Batvia, IL: Fermi National Accelator Laboratory.
van den Bos, K.H.W., De Backer, A., Martinez, G.T., Winckelmans, N., Bals, S., Nellist, P.D. & Van Aert, S. (2016). Unscrambling mixed elements using high angle annular dark field scanning transmission electron microscopy. Phys Rev Lett 116, 246101.
Van Aert, S., Geuens, P., Van Dyck, D., Kisielowski, C. & Jinschek, J.R. (2007). Electron channelling based crystallography. Ultramicroscopy 107, 551558.
Van Dyck, D. & Op de Beeck, M. (1996). A simple intuitive theory for electron diffraction. Ultramicroscopy 64, 99107.
Voyles, P.M., Grazul, J.L. & Muller, D.A. (2003). Imaging individual atoms inside crystals with ADF-STEM. Ultramicroscopy 96, 251273.
Voyles, P.M., Muller, D.A. & Kirkland, E.J. (2004). Depth-dependent imaging of individual dopant atoms in silicon. Microsc Microanal 10, 291300.
Wu, R.J., Odlyzko, M.L. & Mkhoyan, K.A. (2014). Determining the thickness of atomically thin MoS2 and WS2 in the TEM. Ultramicroscopy 147, 820.
Xu, P., Loane, R.F. & Silcox, J. (1991). Energy-filtered convergent-beam electron diffraction in STEM. Ultramicroscopy 38, 127133.
Yu, Z. & Silcox, J. (2004). Channeling of sub-angstrom probes along isolated atomic columns. Microsc Microanal 10(S02), 570571.

Keywords

Simplifying Electron Beam Channeling in Scanning Transmission Electron Microscopy (STEM)

  • Ryan J. Wu (a1), Anudha Mittal (a1), Michael L. Odlyzko (a1) and K. Andre Mkhoyan (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed