Skip to main content Accessibility help
×
Home

Scale-Bridging Analysis on Deformation Behavior of High-Nitrogen Austenitic Steels

  • Tae-Ho Lee (a1), Heon-Young Ha (a1), Byoungchul Hwang (a2), Sung-Joon Kim (a3), Eunjoo Shin (a4) and Jong Wook Lee (a5)...

Abstract

Scale-bridging analysis on deformation behavior of high-nitrogen austenitic Fe–18Cr–10Mn–(0.39 and 0.69)N steels was performed by neutron diffraction, electron backscattered diffraction (EBSD), and transmission electron microscopy (TEM). Two important modes of deformation were identified depending on the nitrogen content: deformation twinning in the 0.69 N alloy and strain-induced martensitic transformation in the 0.39 N alloy. The phase fraction and deformation faulting probabilities were evaluated based on analyses of peak shift and asymmetry of neutron diffraction profiles. Semi in situ EBSD measurement was performed to investigate the orientation dependence of deformation microstructure and it showed that the variants of ε martensite as well as twin showed strong orientation dependence with respect to tensile axis. TEM observation showed that deformation twin with a {111}⟨112⟩ crystallographic component was predominant in the 0.69 N alloy whereas two types of strain-induced martensites (ε and α′ martensites) were observed in the 0.39 N alloy. It can be concluded that scale-bridging analysis using neutron diffraction, EBSD, and TEM can yield a comprehensive understanding of the deformation mechanism of nitrogen-alloyed austenitic steels.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Scale-Bridging Analysis on Deformation Behavior of High-Nitrogen Austenitic Steels
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Scale-Bridging Analysis on Deformation Behavior of High-Nitrogen Austenitic Steels
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Scale-Bridging Analysis on Deformation Behavior of High-Nitrogen Austenitic Steels
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author. E-mail: lth@kims.re.kr

References

Hide All
Fujita, H. & Mori, T. (1972). Stacking faults and f.c.c. (γ) → h.c.p. (ε) transformation in 18/8-type stainless steel. Acta Metall 20, 759767.
Idrissi, H., Renard, K., Ryelandt, L., Schryvers, D. & Jacques, P.J. (2007). On the mechanism of twin formation in Fe-Mn-C TWIP steels. Acta Mater 58, 24642476.
Lee, T.-H., Kim, S.-J., Shin, E. & Takaki, S. (2006). On the crystal structure of Cr2N precipitates in high-nitrogen austenitic stainless steel (III) neutron diffraction study on the ordered Cr2N superstructure. Acta Cryst 62, 979986.
Lee, T.-H., Oh, C.-S. & Kim, S.-J. (2008). Effects of nitrogen on deformation-induced martensitic transformation in metastable austenitic Fe-18Cr-10Mn-N steels. Scripta Mater 58, 110113.
Lee, T.-H., Oh, C.-S., Kim, S.-J. & Takaki, S. (2007). Deformation twinning in high nitrogen austenitic stainless steel. Acta Mater 55, 36493662.
Nishiyama, Z. (1971). Martensitic Transformation. New York: Academic Press Inc.
Remy, L. & Pineau, A. (1977). Twinning and strain-induced f.c.c. → h.c.p. transformations in the Fe–Mn–Cr–C system. Mater Sci Eng 28, 99107.
Rodriguez-Carvajal, J. (1998). FullProf, Version 3.5d. Saclay, France: Laboratoire Leon Brillouin.
Thompson, P., Cox, D.E. & Hastings, J.B. (1987). Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3. J Appl Cryst 20, 7983.
Venables, J.A. (1962). The martensite transformation in stainless steels. Phil Mag 7, 3544.
Wagner, C.N.J. (1966). Analysis of the broadening and change in position of peaks in an X-ray powder pattern. In Local Atomic Arrangement Studied by X-Ray Diffraction, Cohen, J.B. & Hilliard, J.E. (Eds.). pp. 219269. New York: Gordon and Breach.

Keywords

Scale-Bridging Analysis on Deformation Behavior of High-Nitrogen Austenitic Steels

  • Tae-Ho Lee (a1), Heon-Young Ha (a1), Byoungchul Hwang (a2), Sung-Joon Kim (a3), Eunjoo Shin (a4) and Jong Wook Lee (a5)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed