Skip to main content Accessibility help
×
Home

Sample Preparation for Precise and Quantitative Electron Holographic Analysis of Semiconductor Devices

  • Myung-Geun Han (a1), Jing Li (a1), Qianghua Xie (a2), Peter Fejes (a2), James Conner (a3), Bill Taylor (a3) and Martha R. McCartney (a1) (a4)...

Abstract

Wedge polishing was used to prepare one-dimensional Si n-p junction and Si p-channel metal-oxide-silicon field effect transistor (pMOSFET) samples for precise and quantitative electrostatic potential analysis using off-axis electron holography. To avoid artifacts associated with ion milling, cloth polishing with 0.02-μm colloidal silica suspension was used for final thinning. Uniform thickness and no significant charging were observed by electron holography analysis for samples prepared entirely by this method. The effect of sample thickness was investigated and the minimum thickness for reliable results was found to be ∼160 nm. Below this thickness, measured phase changes were smaller than expected. For the pMOSFET sample, quantitative analysis of two-dimensional electrostatic potential distribution showed that the metallurgical gate length (separation between two extension junctions) was ∼54 nm, whereas the actual gate length was measured to be ∼70 nm by conventional transmission electron microscopy. Thus, source and drain junction encroachment under the gate was 16 nm.

Copyright

Corresponding author

Corresponding author. E-mail: mghan@asu.edu

References

Hide All

REFERENCES

Duhayon, N., Eyben, P., Fouchier, M., Clarysse, T., Vandervorst, W., Alvarez, D., Schoemann, S., Ciappa, M., Stangoni, M., Fichtner, W., Formanek, P., Kittler, M., Raineri, V., Giannazzo, F., Goghero, D., Rosenwaks, Y., Shikler, R., Saraf, S., Sadewasser, S., Barreau, N., Glatzel, T., Verheijen, M., Mentink, S.A.M., Von Sprekelsen, M., Maltezopoulos, T., Wiesendanger, R., & Hellemans, L. (2004). Assessing the performance of two-dimensional dopant profiling techniques. J Vac Sci Technol B 22, 385393.
Gajdardziska-Josifovska, M., McCartney, M.R., De Ruijter, W.J., Smith, D.J., Weiss, J.K., & Zuo, J.M. (1993). Accurate measurements of mean inner potential of crystal wedges using digital electron holograms. Ultramicroscopy 50, 285299.
Gribelyuk, M.A., McCartney, M.R., Li, J., Murthy, C.S., Ronsheim, P., Doris, B., McMurray, J.S., Hegde, S., & Smith, D.J. (2002). Mapping of electrostatic potential in deep submicron CMOS devices by electron holography. Phys Rev Lett 89, 025502.
Liechty, G.D., Hirsch, E., & Smith, C.A. (2003). TEM wedge preparation of an IC: MultiPrep™ Procedure Documents. Rancho Dominguez, CA: Allied High Tech Products Inc.
McCartney, M.R. & Gajdardziska-Josifovska, M. (1994). Absolute measurement of normalized thickness, ti, from off-axis electron holography. Ultramicroscopy 53, 283289.
McCartney, M.R., Smith, D.J., Farrow, R.F.C., & Makus, R.F. (1997). Off-axis electron holography of epitaxial Fe-Pt films. J Appl Phys 82, 24612465.
Rau, W.D., Schwander, P., Baumann, F.H., Hoppner, W., & Ourmazd, A. (1999). Two-dimensional mapping of the electrostatic potential in transistors by electron holography. Phys Rev Lett 82, 26142617.
Semiconductor Industry Association. (2003). International Technology Roadmap for Semiconductors. Available at: http://public.itrs.net/Files/2001ITRS/.
Singisetti, U., McCartney, M.R., Li, J., Chakraborty, P.S., Goodnick, S.M., Kozicki, M.N., & Thornton, T.J. (2003). Two-dimensional electrical characterization of ultrashallow source/drain extensions for nanoscale MOSFETs. Superlattices and Microstructures 34, 301310.
Snider, G. (2001). 1D Poisson. Available at: http://www.nd.edu/∼gsnider/.
Somodi, P.K., Dunin-Borkowski, R.E., Twitchett, A.C., Barnes, C.H.W., & Midgley, P.A. (2003). Simulations of the electrostatic potential distribution in a TEM sample of a semiconductor device. Inst Phys Conf Ser 180, 501504.
Twitchett, A.C., Dunin-Borkowski, R.E., Broom, R.F., & Midgley, P.A. (2004). Quantitative electron holography of biased semiconductor devices. J Phys Condens Matter 16, S181S192.
Twitchett, A.C., Dunin-Borkowski, R.E., & Midgley, P.A. (2002). Quantitative electron holography of biased semiconductor devices. Phys Rev Lett 88, 238302.
Wang, Z.-G., Kato, N., Sasaki, K., Hirayama, T., & Saka, H. (2004). Electron holographic mapping of two-dimensional doping areas in cross-sectional device specimens prepared by the lift-out technique based on a focused ion beam. J Electron Microsc 53, 115119.

Keywords

Sample Preparation for Precise and Quantitative Electron Holographic Analysis of Semiconductor Devices

  • Myung-Geun Han (a1), Jing Li (a1), Qianghua Xie (a2), Peter Fejes (a2), James Conner (a3), Bill Taylor (a3) and Martha R. McCartney (a1) (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed