Skip to main content Accessibility help
×
Home

Salmonella–Host Cell Interactions, Changes in Host Cell Architecture, and Destruction of Prostate Tumor Cells with Genetically Altered Salmonella

  • Zhisheng Zhong (a1), Robert A. Kazmierczak (a2), Alison Dino (a2), Rula Khreis (a2), Abraham Eisenstark (a2) and Heide Schatten (a1)...

Abstract

Increasingly, genetically modified Salmonella are being explored as a novel treatment for cancer because Salmonella preferentially replicate within tumors and destroy cancer cells without causing the septic shock that is typically associated with wild-type S. typhimurium infections. However, the mechanisms by which genetically modified Salmonella strains preferentially invade cancer cells have not yet been addressed in cellular detail. Here we present data that show S. typhimurium strains VNP20009, LT2, and CRC1674 invasion of PC-3M prostate cancer cells. S. typhimurium-infected PC-3M human prostate cancer cells were analyzed with immunofluorescence microscopy and transmission electron microscopy (TEM) at various times after inoculation. We analyzed microfilaments, microtubules, and DNA with fluorescence and immunofluorescence microscopy. 3T3 Phi-Yellow-mitochondria mouse 3T3 cells were used to study the effects of Salmonella infestation on mitochondria distribution in live cells. Our TEM results show gradual destruction of mitochondria within the PC-3M prostate cancer cells with complete loss of cristae at 8 h after inoculation. The fluorescence intensity in YFP-mitochondria-transfected mouse 3T3 cells decreased, which indicates loss of mitochondria structure. Interestingly, the nucleus does not appear affected by Salmonella within 8 h. Our data demonstrate that genetically modified S. typhimurium destroy PC-3M prostate cancer cells, perhaps by preferential destruction of mitochondria.

Copyright

Corresponding author

Corresponding author. E-mail: SchattenH@missouri.edu

References

Hide All

REFERENCES

Altier, C. (2005). Genetic and environmental control of Salmonella invasion. J Microbiol 43, 8592.
Bermudes, D., Low, K.B., Pawelek, J., Feng, M., Belcourt, M., Zheng, L.M. & King, I. (2001). Tumour-selective Salmonella-based cancer therapy. Biotechnol Genet Eng Rev 18, 219233.
Bermudes, D., Zheng, L.M. & King, I.C. (2002). Live bacteria as anticancer agents and tumor-selective protein delivery vectors. Curr Opin Drug Discov Dev 5, 194199.
Bettegowda, C., Huang, X., Lin, J., Cheong, I., Kohli, M., Szabo, S.A., Zhang, X., Diaz, L.A., Jr., Velculesco, V.E., Parmigiani, G., Kinzler, K.W., Vogelstein, B. & Zhou, S. (2006). The genome and transcriptomes of the anti-tumor agent Clostridium novyi-NT. Nat Biotechnol 24, 15731580.
Beuzon, C.R., Méresse, S., Unsworth, K.E., Ruiz-Albert, J., Garvis, S., Waterman, S.R., Ryder, T.A., Boucrot, E. & Holden, D.W. (2000). Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J 19, 32353249.
Catron, D.M., Sylvester, M.D., Lange, Y., Kadekoppala, M., Jones, B.D., Monack, D.M., Falkow, S. & Haldar, K. (2002). The Salmonella-containing vacuole is a major site of intracellular cholesterol accumulation and recruits the GPI-anchored protein CD55. Cell Microbiol 4, 315328.
Chakrabarty, A.M. (2003). Microorganisms and cancer: Quest for a therapy. J Bacteriol 185, 26832686.
Coppens, I., Dunn, J.D., Romano, J.D., Pypaert, M., Zhang, H. & Boothroyd, J.C. (2006). Toxoplasma gondii sequesters lysosomes from mammalian hosts in the vacuolar space. Cell 125, 261274.
Dumont, A., Schroeder, N., Gorvel, J.-P. & Méresse, S. (2007). Analysis of kinesin accumulation on Salmonella-containing vacuoles. In Methods in Molecular Biology, vol. 253: Salmonella Protocols, Schatten, H. & Eisenstark, A. (Eds.), pp. 273288. Totowa, NJ: Humana Press Inc.
Eichelberg, K. & Galan, J.E. (1999). Differential regulation of Salmonella typhimurium type III secreted proteins by pathogenicity island 1 (SPI-1)-encoded transcriptional activators InvF and hilA. Infect Immun 67, 40994105.
Eisenstark, A., Kazmierczak, R.A., Fea, A., Khreis, R., Newman, D. & Schatten, H. (2007). Development of Salmonella strains as cancer therapy agents and testing in tumor cell lines. In Methods in Molecular Biology, vol. 253: Salmonella Protocols, Schatten, H. & Eisenstark, A. (Eds.), pp. 321353. Totowa, NJ: Humana Press Inc.
Forbes, N.S. (2006). Profile of a bacterial tumor killer. Nat Biotechnol 24, 1148411485.
Francis, C.L., Starnbach, M.N. & Falkow, S. (1992). Morphological and cytoskeletal changes in epithelial cells occur immediately upon interaction with Salmonella typhimurium grown under low-oxygen conditions. Mol Microbiol 6, 30773087.
Galan, J.E. (1996). Molecular genetic bases of Salmonella entry into host cells. Mol Microbiol 20, 263271.
Galán, J.E. (2001). Salmonella interactions with host cells: Type III secretion at work. Annu Rev Cell Dev Biol 17, 5386.
Galan, J.E. & Curtiss, R., III (1989). Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Natl Acad Sci USA 86, 63836387.
Garcia-del Portillo, F. & Finlay, B.B. (1995). The varied lifestyles of intracellular pathogens within eukaryotic vacuolar compartments. Trends Microbiol 3, 373380.
Guignot, J., Caron, E., Beuzon, C., Bucci, C., Kagan, J., Roy, C. & Holden, D.W. (2004). Microtubule motors control membrane dynamics of Salmonella-containing vacuoles. J Cell Sci 117, 10331045.
Higginbotham, H., Bielas, S., Tanaka, T. & Gleeson, J.G. (2004). Transgenic mouse line with green-fluorescent protein-labeled centrin 2 allows visualization of the centrosome in living cells. Transgenic Res BW2116, 110.
Katayama, M., Zhong, Z-S., Lai, L., Sutovsky, P., Prather, R.S. & Schatten, H. (2006). Mitochondria distribution and microtubule organization in fertilized and cloned porcine embryos: Implications for developmental potential. Dev Biol 299, 206220.
Low, K.B., Ittensohn, M., Le, T., Platt, J., Sodi, S., Amoss, M., Ash, O., Carmichael, E., Chakraborty, A., Fischer, J., Lin, S.L., Luo, X., Miller, S.I., Zheng, L., King, I., Pawelek, J.M. & Bermudes, D. (1999). Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol 17, 3741.
Marsman, M., Jordens, I., Kuijl, C., Janssen, L. & Neefjes, J. (2004). Dynein-mediated vesicle transport controls intracellular Salmonella replication. Mol Biol Cell 15, 29542964.
Méresse, S., Steele-Mortimer, O., Finlay, B.B. & Gorvel, J.P. (1999). The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. EMBO J 18, 43944403.
Méresse, S., Unsworth, K.E., Habermann, A., Griffiths, G., Fang, F., Martinez-Lorenzo, M.J., Waterman, S.R., Gorvel, J.P. & Holden, D.W. (2001). Remodeling of the actin cytoskeleton is essential for replication of intravacuolar Salmonella. Cell Microbiol 3, 567577.
Pawelek, J.M., Low, K.B. & Bermudes, D. (2003). Bacteria as tumour-targeting vectors. Lancet Oncol 4, 548556.
Pawelek, J.M., Sodi, S., Chakraborty, A.K., Platt, J.T., Miller, S., Holden, D.W., Hensel, M. & Low, K.B. (2002). Salmonella pathogenicity island-2 and anticancer activity in mice. Cancer Gene Ther 9, 813818.
Perrett, C.A. & Jepson, M.A. (2007). Applications of cell imaging in Salmonella research. In Methods in Molecular Biology, vol. 253: Salmonella Protocols, Schatten, H. & Eisenstark, A. (Eds.), pp. 235272. Totowa, NJ: Humana Press Inc.
Saltzman, D.A. (2005). Cancer immunotherapy based on the killing of Salmonella typhimurium-infected tumour cells. Expert Opin Biol Ther 5, 443449.
Schatten, G., Schatten, H., Spector, I., Cline, C., Paweletz, N., Simerly, C. & Petzelt, C. (1986). Latrunculin inhibits the microfilament-mediated processes during fertilization, cleavage and early development in sea urchins and mice. Exp Cell Res 166, 191208.
Schatten, H., Cheney, R., Balczon, R., Willard, M., Cline, C., Simerly, C. & Schatten, G. (1986). Localization of fodrin during fertilization and early development of sea urchins and mice. Dev Biol 118, 457466.
Schatten, H., Fea, A., Zhong, Z-S., Kazmierczak, R., Newman, D. & Eisenstark, E. (2006). Targeting of prostate tumor with genetically altered Salmonella. Microsc Microanal 12(Suppl. 2), 228229.
Schatten, H., Ripple, M., Balczon, R., Weindruch, R. & Taylor, M. (2000a). Androgen and taxol cause cell type specific alterations of centrosome and DNA organization in androgen-responsive LNCaP and androgen-independent prostate cancer cells. J Cell Biochem 76, 463477.
Schatten, H. & Ris, H. (2002). Unconventional specimen preparation techniques using high resolution low voltage field emission scanning electron microscopy to study cell motility, host cell invasion, and internal structures in Toxoplasma gondii. Microsc Microanal 8, 94103.
Schatten, H. & Ris, H. (2004). Three-dimensional imaging of Toxoplasma gondii—Host cell membrane interactions. Microsc Microanal 10, 580585.
Schatten, H., Wiedemeier, A., Taylor, M., Lubahn, D., Greenberg, M.N., Besch-Williford, C., Rosenfeld, C., Day, K. & Ripple, M. (2000b). Centrosome-centriole abnormalities are markers for abnormal cell divisions and cancer in the transgenic adenocarcinoma mouse prostate (TRAMP) model. Biol Cell 92, 331340.
Schlumberger, M.C. & Hardt, W.-D. (2006). Salmonella type III secretion: Pulling the host cell's strings. Curr Opin Microbiol 9, 4654.
Smith, A.C., Circulis, J.T., Casanova, J.E., Scidmore, M.A. & Brumell, J.H. (2005). Interaction of the Salmonella-containing vacuole with the endocytic recycling system. J Biol Chem 280, 2463424641.
Steele-Mortimer, O., Meresse, S., Gorvel, J.P., Toh, B.H. & Finlay, B.B. (1999). Biogenesis of Salmonella typhimurium-containing vacuoles in epithelial cells involves interactions with the early endocytic pathway. Cell Microbiol 1, 3349.
Sun, Q.-Y., Lai, L., Wu, G., Park, K.-W., Day, B., Prather, R.S. & Schatten, H. (2001a). Microtubule assembly after treatment of pig oocytes with taxol: Correlation with chromosomes, γ-tubulin and MAP kinase. Mol Reprod Dev 60, 481490.
Sun, Q.-Y., Wu, G.M., Lai, L., Park, K.W., Day, B., Prather, R.S. & Schatten, H. (2001b). Translocation of active mitochondria during pig oocyte maturation, fertilization and early embryo development in vitro. Reproduction 122, 155163.
Zhao, M., Yang, M., Ma, H., Li, X., Tan, X., Li, S., Yang, Z. & Hoffman, M. (2006). Targeted therapy with a Salmonella Typhimurium leucine-arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66, 76477652.
Zhong, Z., Katayama, M., Liu, Z.-H., Hao, Y.-H., Lai, L., Wax, D., Samuel, M., Sun, Q.-Y., Prather, R.S. & Schatten, H. (2006). Translocation of mitochondria in cloned porcine embryos. Microsc Microanal 12(Suppl. 2), 67.
Zhong, Z., Spate, L., Li, R., Hao, Y., Lai, L., Wax, D., Waterman, K., Sun, Q.-Y., Prather, R.S. & Schatten, H. (2007). Remodeling of centrosomes in intraspecies and interspecies nuclear transfer porcine embryos. Cell Cycle 6, 15101520.
Zhou, D., Mooseker, M.S. & Galan, J.E. (1999). Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. Science 283, 20922095.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed