Skip to main content Accessibility help
×
Home

Room Temperature Synthesis of Cu2O Nanospheres: Optical Properties and Thermal Behavior

  • Daniela Nunes (a1), Lídia Santos (a1), Paulo Duarte (a1), Ana Pimentel (a1), Joana V. Pinto (a1), Pedro Barquinha (a1), Patrícia A. Carvalho (a2), Elvira Fortunato (a1) and Rodrigo Martins (a1)...

Abstract

The present work reports a simple and easy wet chemistry synthesis of cuprous oxide (Cu2O) nanospheres at room temperature without surfactants and using different precursors. Structural characterization was carried out by X-ray diffraction, transmission electron microscopy, and scanning electron microscopy coupled with focused ion beam and energy-dispersive X-ray spectroscopy. The optical band gaps were determined from diffuse reflectance spectroscopy. The photoluminescence behavior of the as-synthesized nanospheres showed significant differences depending on the precursors used. The Cu2O nanospheres were constituted by aggregates of nanocrystals, in which an on/off emission behavior of each individual nanocrystal was identified during transmission electron microscopy observations. The thermal behavior of the Cu2O nanospheres was investigated with in situ X-ray diffraction and differential scanning calorimetry experiments. Remarkable structural differences were observed for the nanospheres annealed in air, which turned into hollow spherical structures surrounded by outsized nanocrystals.

Copyright

Corresponding author

References

Hide All
Abou-Ras, D., Jahn, U., Nichterwitz, M., Unold, T., Klaer, J. & Schock, H.W. (2010). Combined electron backscatter diffraction and cathodoluminescence measurements on stacks and thin-film solar cells. J Appl Phys 107(1), 014311-1–014311-8.
Al-Ghamdi, A.A., Al-Hazmi, F., Al-Hartomy, O., El-Tantawy, F. & Yakuphanoglu, F. (2012). A novel synthesis and optical properties of cuprous oxide nano octahedrons via microwave hydrothermal route. J Sol-Gel Sci Technol 63(1), 187193.
Aydın, C., Benhaliliba, M., Al-Ghamdi, A., Gafer, Z., El-Tantawy, F. & Yakuphanoglu, F. (2013). Determination of optical band gap of ZnO:ZnAl2O4 composite semiconductor nanopowder materials by optical reflectance method. J Electroceram 31(1–2), 265270.
Balamurugan, B. & Mehta, B.R. (2001). Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation. Thin Solid Films 396(1–2), 9096.
Bijani, S., Gabás, M., Martínez, L., Ramos-Barrado, J.R., Morales, J. & Sánchez, L. (2007). Nanostructured Cu2O thin film electrodes prepared by electrodeposition for rechargeable lithium batteries. Thin Solid Films 515(13), 55055511.
Cao, Y., Fan, J., Bai, L., Yuan, F. & Chen, Y. (2009). Morphology evolution of Cu2O from octahedra to hollow structures. Cryst Growth Des 10(1), 232236.
Cavalcante, L., Longo, V., Sczancoski, J., Almeida, M., Batista, A., Varela, J., Orlandi, M.O., Longo, E. & Li, M.S. (2012). Electronic structure, growth mechanism and photoluminescence of CaWO4 crystals. Cryst Eng Comm 14(3), 853868.
Chang, I.C., Chen, P.-C., Tsai, M.-C., Chen, T.-T., Yang, M.-H., Chiu, H.-T. & Lee, C.-Y. (2013). Large-scale synthesis of uniform Cu2O nanocubes with tunable sizes by in-situ nucleation. Cryst Eng Comm 15(13), 23632366.
Chang, Y., Teo, J.J. & Zeng, H.C. (2004). Formation of colloidal CuO nanocrystallites and their spherical aggregation and reductive transformation to hollow Cu2O nanospheres. Langmuir 21(3), 10741079.
Chen, W., Li, L., Peng, Q. & Li, Y. (2012). Polyol synthesis and chemical conversion of Cu2O nanospheres. Nano Res 5(5), 320326.
Chen, Z.-Z., Shi, E.-W., Zheng, Y.-Q., Li, W.-J., Xiao, B. & Zhuang, J.-Y. (2003). Growth of hex-pod-like Cu2O whisker under hydrothermal conditions. J Cryst Growth 249(1–2), 294300.
Cho, Y.S. & Huh, Y.D. (2009). Preparation of CuO hollow spheres by oxidation of Cu microspheres. Bull Korean Chem Soc 30(6), 14101412.
Choudhury, B., Dey, M. & Choudhury, A. (2013). Defect generation, d-d transition, and band gap reduction in Cu-doped TiO2 nanoparticles. Int Nano Lett 3(1), 18.
Deki, S., Akamatsu, K., Yano, T., Mizuhata, M. & Kajinami, A. (1998). Preparation and characterization of copper(I) oxide nanoparticles dispersed in a polymer matrix. J Mater Chem 8(8), 18651868.
Djurišić, A.B., Leung, Y.H., Tam, K.H., Ding, L., Ge, W.K., Chen, H.Y. & Gwo, S. (2006). Green, yellow, and orange defect emission from ZnO nanostructures: Influence of excitation wavelength. Appl Phys Lett 88(10), 103107-1–103107-3.
Fan, H.J., Gçsele, U. & Zacharias, M. (2007). Formation of nanotubes and hollow nanoparticles based on Kirkendall and diffusion processes: A review. Small 3(10), 16601671.
Figueiredo, V., Elangovan, E., Gonçalves, G., Barquinha, P., Pereira, L., Franco, N., Alves, E., Martins, R. & Fortunato, E. (2008). Effect of post-annealing on the properties of copper oxide thin films obtained from the oxidation of evaporated metallic copper. Appl Surf Sci 254(13), 39493954.
Figueiredo, V., Elangovan, E., Gonçalves, G., Franco, N., Alves, E., Park, S.H.K., Martins, R. & Fortunato, E. (2009). Electrical, structural and optical characterization of copper oxide thin films as a function of post annealing temperature. Phys Status Solidi (a) 206(9), 21432148.
Figueiredo, V., Pinto, J.V., Deuermeier, J., Barros, R., Alves, E., Martins, R. & Fortunato, E. (2013). P-type CuxO thin-film transistors produced by thermal oxidation. J Display Technol 9(9), 735740.
Filipič, G. & Cvelbar, U. (2012). Copper oxide nanowires: A review of growth. Nanotechnology 23(19), 194001.
Firmansyah, D.A., Kim, T., Kim, S., Sullivan, K., Zachariah, M.R. & Lee, D. (2009). Crystalline phase reduction of cuprous oxide (Cu2O) nanoparticles accompanied by a morphology change during ethanol-assisted spray pyrolysis. Langmuir 25(12), 70637071.
Fultz, B. & Howe, J. (2008). Diffraction and the X-ray powder diffractometer. In Transmission Electron Microscopy and Diffractometry of Materials , pp. 159. Berlin, Heidelberg: Springer.
Gangopadhyay, P., Kesavamoorthy, R., Bera, S., Magudapathy, P., Nair, K., Panigrahi, B. & Narasimhan, S. (2005). Optical absorption and photoluminescence spectroscopy of the growth of silver nanoparticles. Phys Rev Lett 94(4), 047403.
Garuthara, R. & Siripala, W. (2006). Photoluminescence characterization of polycrystalline n-type Cu2O films. J Lumin 121(1), 173178.
Geng, B., Liu, J., Zhao, Y. & Wang, C. (2011). A room-temperature chemical route to homogeneous core-shell Cu2O structures and their application in biosensors. Cryst Eng Comm 13(2), 697701.
Gfroerer, T.H. (2000). Photoluminescence in analysis of surfaces and interfaces. In Encyclopedia of Analytical Chemistry, Meyers, R.A. (Ed.), pp. 92099231. Chichester: John Wiley & Sons Ltd.
Gonçalves, A.M.B., Campos, L.C., Ferlauto, A.S. & Lacerda, R.G. (2009). On the growth and electrical characterization of CuO nanowires by thermal oxidation. J Appl Phys 106(3), 034303-1–034303-5.
Gu, Q. & Wang, B. (2010). Correlation between structural defects and optical properties of Cu2O nanowires grown by thermal oxidation. arXiv Preprint arXiv:1012.5338, 111.
Gu, Y.-E., Su, X., Du, Y. & Wang, C. (2010). Preparation of flower-like Cu2O nanoparticles by pulse electrodeposition and their electrocatalytic application. Appl Surf Sci 256(20), 58625866.
Hara, M., Kondo, T., Komoda, M., Ikeda, S., Kondo, J.N., Domen, K., Hara, M., Shinohara, K. & Tanaka, A. (1998). Cu2O as a photocatalyst for overall water splitting under visible light irradiation. Chem Commun 3, 357358.
He, P., Shen, X. & Gao, H. (2005). Size-controlled preparation of Cu2O octahedron nanocrystals and studies on their optical absorption. J Colloid Interface Sci 284(2), 510515.
Heng, B., Xiao, T., Tao, W., Hu, X., Chen, X., Wang, B., Sun, D. & Tang, Y. (2012). Zn doping-induced shape evolution of microcrystals: The case of cuprous oxide. Cryst Growth Des 12(8), 39984005.
Hsu, Y.-K., Yu, C.-H., Chen, Y.-C. & Lin, Y.-G. (2012). Hierarchical Cu2O photocathodes with nano/microspheres for solar hydrogen generation. RSC Adv 2(32), 1245512459.
Hu, L., Huang, Y., Zhang, F. & Chen, Q. (2013). CuO/Cu2O composite hollow polyhedrons fabricated from metal-organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 5(10), 41864190.
Hu, Y., Huang, X., Wang, K., Liu, J., Jiang, J., Ding, R., Ji, X. & Li, X. (2010). Kirkendall-effect-based growth of dendrite-shaped CuO hollow micro/nanostructures for lithium-ion battery anodes. J Solid State Chem 183(3), 662667.
Ito, T., Yamaguchi, H., Okabe, K. & Masumi, T. (1998). Single-crystal growth and characterization of Cu2O and CuO. J Mater Sci 33(14), 35553566.
Jana, S. & Biswas, P.K. (1997). Optical characterization of in-situ generated Cu2O excitons in solution derived nano-zirconia film matrix. Mater Lett 32(4), 263270.
Jiang, L., You, T., Yin, P., Shang, Y., Zhang, D., Guo, L. & Yang, S. (2013). Surface-enhanced Raman scattering spectra of adsorbates on Cu2O nanospheres: Charge-transfer and electromagnetic enhancement. Nanoscale 5(7), 27842789.
Karabudak, E., Yuce, E., Schlautmann, S., Hansen, O., Mul, G. & Gardeniers, H. (2012). On the pathway of photoexcited electrons: Probing photon-to-electron and photon-to-phonon conversions in silicon by ATR-IR. Phys Chem Chem Phys 14(31), 1088210885.
Kevin, M., Ong, W.L., Lee, G.H. & Ho, G.W. (2011). Formation of hybrid structures: Copper oxide nanocrystals templated on ultralong copper nanowires for open network sensing at room temperature. Nanotechnology 22(23), 235701.
Koffyberg, F.P. & Benko, F.A. (1982). A photoelectrochemical determination of the position of the conduction and valence band edges of p‐type CuO. J Appl Phys 53(2), 11731177.
Korshunov, A.V. & Il’in, A.P. (2009). Oxidation of copper nanopowders on heating in air. Russ J Appl Chem 82(7), 11641171.
Kraus, W. & Nolze, G. (1996). POWDER CELL – A program for the representation and manipulation of crystal structures and calculation of the resulting X-ray powder patterns. J Appl Cryst 29(3), 301303.
Kubelka, P. & Munk, F. (1931). Ein beitrag zur optik der farbanstriche. Z Tech Phys (Leipzig) 12, 593601.
Kumar, V., Masudy-Panah, S., Tan, C.C., Wong, T.K.S., Chi, D.Z. & Dalapati, G.K. (2013). Copper oxide based low cost thin film solar cells. In Nanoelectronics Conference, 2013 IEEE 5th International, January 2013, Singapore: INEC, pp. 443–445.
Lupan, O., Pauporté, T., Chow, L., Viana, B., Pellé, F., Ono, L.K., Roldan Cuenya, B. & Heinrich, H. (2010). Effects of annealing on properties of ZnO thin films prepared by electrochemical deposition in chloride medium. Appl Surf Sci 256(6), 18951907.
Meng, F. & Jin, S. (2011). The solution growth of copper nanowires and nanotubes is driven by screw dislocations. Nano Lett 12(1), 234239.
Mittiga, A., Salza, E., Sarto, F., Tucci, M. & Vasanthi, R. (2006). Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl Phys Lett 88(16), 163502.
Morales, A.E., Mora, E.S. & Pal, U. (2007). Use of diffuse reflectance spectroscopy for optical characterization of un-supported nanostructures. Rev Mex Fıs S 53(5), 1822.
Nakamura, R., Tokozakura, D., Lee, J.G., Mori, H. & Nakajima, H. (2008). Shrinking of hollow Cu2O and NiO nanoparticles at high temperatures. Acta Mater 56(18), 52765284.
Nunes, D., Pimentel, A., Barquinha, P., Carvalho, P.A., Fortunato, E. & Martins, R. (2014). Cu2O polyhedral nanowires produced by microwave irradiation. J Mater Chem C 2, 60976103.
Pearson, W.B., Villars, P. & Calvert, L.D. (1985). Pearson’s Handbook of Crystallographic Data for Intermetallic Phases. Ohio: American Society for Metals.
Raidongia, K. & Rao, C.N.R. (2008). Study of the transformations of elemental nanowires to nanotubes of metal oxides and chalcogenides through the Kirkendall effect. J Phys Chem C 112(35), 1336613371.
Rathmell, A.R., Bergin, S.M., Hua, Y.-L., Li, Z.-Y. & Wiley, B.J. (2010). The growth mechanism of copper nanowires and their properties in flexible, transparent conducting films. Adv Mater 22(32), 35583563.
Schneider, C.A., Rasband, W.S. & Eliceiri, K.W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9, 671675.
Serin, N., Serin, T., Horzum, Ş. & Çelik, Y. (2005). Annealing effects on the properties of copper oxide thin films prepared by chemical deposition. Semicond Sci Technol 20(5), 398401.
Sharma, P. & Bhatti, H.S. (2009). Synthesis of fluorescent hollow and porous Cu2O nanopolyhedras in the presence of poly(vinyl pyrrolidone). Mater Chem Phys 114(2–3), 889896.
Sharma, P. & Sharma, S.K. (2013). Microscopic investigations of Cu2O nanostructures. J Alloy Comp 557, 152159.
Shinagawa, T., Onoda, M., Fariza, B.M., Sasano, J. & Izaki, M. (2013). Annealing effects and photoelectric properties of single-oriented Cu2O films electrodeposited on Au(111)/Si(100) substrates. J Mater Chem A 1(32), 91829188.
Sui, Y., Zhang, Y., Fu, W., Yang, H., Zhao, Q., Sun, P., Ma, D., Yuan, M., Li, Y. & Zou, G. (2009). Low-temperature template-free synthesis of Cu2O hollow spheres. J Cryst Growth 311(8), 22852290.
Sun, S., Zhang, X., Song, X., Liang, S., Wang, L. & Yang, Z. (2012). Bottom-up assembly of hierarchical Cu2O nanospheres: Controllable synthesis, formation mechanism and enhanced photochemical activities. Cryst Eng Comm 14(10), 35453553.
Vila, M., Diaz-Guerra, C. & Piqueras, J. (2010). Optical and magnetic properties of CuO nanowires grown by thermal oxidation. J Phys D Appl Phys 43(13), 135403.
Wang, C.-M., Genc, A., Cheng, H., Pullan, L., Baer, D.R. & Bruemmer, S.M. (2014 a). In-Situ TEM visualization of vacancy injection and chemical partition during oxidation of Ni-Cr nanoparticles. Sci Rep 4, 16.
Wang, W., Tu, Y., Zhang, P. & Zhang, G. (2011). Surfactant-assisted synthesis of double-wall Cu2O hollow spheres. Cryst Eng Comm 13(6), 18381842.
Wang, Y., Miska, P., Pilloud, D., Horwat, D., Mücklich, F. & Pierson, J.F. (2014 b). Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing. J Appl Phys 115(7), 073505-1–073505-5.
Wei, H.M., Gong, H.B., Chen, L., Zi, M. & Cao, B.Q. (2012). Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. J Phys Chem C 116(19), 1051010515.
Wei, M. & Huo, J. (2010). Preparation of Cu2O nanorods by a simple solvothermal method. Mater Chem Phys 121(1–2), 291294.
Wu, W.-T., Wang, Y., Shi, L., Pang, W., Zhu, Q., Xu, G. & Lu, F. (2006). Propeller-like multicomponent microstructures: Self-assemblies of nanoparticles of poly(vinyl alcohol)-coated Ag and/or Cu2O. J Phys Chem B 110(30), 1470214708.
Yang, H., Ouyang, J., Tang, A., Xiao, Y., Li, X., Dong, X. & Yu, Y. (2006). Electrochemical synthesis and photocatalytic property of cuprous oxide nanoparticles. Mater Res Bull 41(7), 13101318.
Yang, L. & Kruse, B. (2004). Revised Kubelka–Munk theory. I. Theory and application. J Opt Soc Am A 21(10), 19331941.
Zhang, D. (2013). Synergetic effects of Cu2O photocatalyst with titania and enhanced photoactivity under visible irradiation. Acta Chim Slov 6(1), 141149.
Zhang, J., Liu, J., Peng, Q., Wang, X. & Li, Y. (2006). Nearly monodisperse Cu2O and CuO nanospheres: Preparation and applications for sensitive gas sensors. Chem Mater 18(4), 867871.
Zhang, L. & Wang, H. (2011). Cuprous oxide nanoshells with geometrically tunable optical properties. ACS Nano 5(4), 32573267.
Zhou, D.-L., Feng, J.-J., Cai, L.-Y., Fang, Q.-X., Chen, J.-R. & Wang, A.-J. (2014). Facile synthesis of monodisperse porous Cu2O nanospheres on reduced graphene oxide for non-enzymatic amperometric glucose sensing. Electrochim Acta 115, 103108.
Zhu, H., Wang, J. & Xu, G. (2008). Fast synthesis of Cu2O hollow microspheres and their application in DNA biosensor of hepatitis B virus. Cryst Growth Des 9(1), 633638.

Keywords

Type Description Title
VIDEO
Supplementary materials

Nunes Supplementary Material
Supplementary Material

 Video (71.7 MB)
71.7 MB
VIDEO
Supplementary materials

Nunes Supplementary Material
Supplementary Material

 Video (49.6 MB)
49.6 MB
VIDEO
Supplementary materials

Nunes Supplementary Material
Supplementary Material

 Video (24.3 MB)
24.3 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed