Skip to main content Accessibility help
×
Home

Regulation of Vascular Smooth Muscle Cell Stiffness and Adhesion by [Ca2+]i: An Atomic Force Microscopy-Based Study

  • Yi Zhu (a1) (a2), Li He (a1), Jing Qu (a1) and Yong Zhou (a1) (a3) (a4)
  • Please note a correction has been issued for this article.

Abstract

The intracellular concentration of calcium ion ([Ca2+]i) is a critical regulator of cell signaling and contractility of vascular smooth muscle cells (VSMCs). In this study, we employed an atomic force microscopy (AFM) nanoindentation-based approach to investigate the role of [Ca2+]i in regulating the cortical elasticity of rat cremaster VSMCs and the ability of rat VSMCs to adhere to fibronectin (Fn) matrix. Elevation of [Ca2+]i by ionomycin treatment increased rat VSMC stiffness and cell adhesion to Fn-biofunctionalized AFM probes, whereas attenuation of [Ca2+]i by 1,2-Bis (2-aminophenoxy)ethane-N,N,N’,N’-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM) treatment decreased the mechanical and matrix adhesive properties of VSMCs. Furthermore, we found that ionomycin/BAPTA-AM treatments altered expression of α5 integrin subunits and α smooth muscle actin in rat VSMCs. These data suggest that [Ca2+]i regulates VSMC elasticity and adhesion to the extracellular matrix by a potential mechanism involving changing dynamics of the integrin–actin cytoskeleton axis.

Copyright

Corresponding author

Author for correspondence: Yi Zhu, E-mail: yzhu1@uab.edu; Yong Zhou, E-mail: yongzhou@uabmc.edu

Footnotes

Hide All

Cite this article: Zhu Y, He L, Qu J and Zhou Y (2018) Regulation of Vascular Smooth Muscle Cell Stiffness and Adhesion by [Ca2+]i: An Atomic Force Microscopy-Based Study. Microsc Microanal. 24(6), 708–712. doi: 10.1017/S1431927618015519

Footnotes

References

Hide All
Bootman, MD (2012) Calcium signaling. Cold Spring Harb Perspect Biol 4, a011171.
Hong, Z, Reeves, KJ, Sun, Z, Li, Z, Brown, NJ and Meininger, GA (2015) Vascular smooth muscle cell stiffness and adhesion to collagen I modified by vasoactive agonists. PLoS One 10, e0119533.
Hong, Z, Sun, Z, Li, M, Li, ZH, Bunyak, F, Ersoy, I, Trzeciakowski, JP, Staiculescu, MC, Jin, M, Martinez-Lemus, L, Hill, MA, Palaniappan, K and Meininger, GA (2014) Vasoactive agonists exert dynamic and coordinated effects on vascular smooth muscle cell elasticity, cytoskeletal remodelling and adhesion. J Physiol 592, 12491266.
Hong, Z, Sun, Z, Li, Z, Mesquitta, WT, Trzeciakowski, JP and Meininger, GA (2012) Coordination of fibronectin adhesion with contraction and relaxation in microvascular smooth muscle. Cardiovasc Res 96, 7380.
Jackson, TY, Sun, Z, Martinez-Lemus, LA, Hill, MA and Meininger, GA (2010) N-Cadherin and integrin blockade inhibit arteriolar myogenic reactivity but not pressure-induced increases in intracellular Ca2+ . Front Physiol 1, a165.
Metz, RP, Patterson, JL and Wilson, E (2012) Vascular smooth muscle cells: isolation, culture, and characterization. Methods Mol Biol 843, 169176.
Morgan, AJ and Jacob, R (1994) Ionomycin enhances Ca2+ influx by stimulating store-regulated cation entry and not by a direct action at the plasma membrane. Biochem J 300, 665672.
Qiu, HY, Zhu, Y, Sun, Z, Trzeciakowski, JP, Gansner, M, Depre, C, Resuello Ranillo, RG, Natividad, FF, Hunter, WC, Genin, GM, Elson, EL, Vatner, DE, Meininger, GA and Vatner, SF (2010) Vascular smooth muscle cell stiffness as a mechanism for increased aortic stiffness with aging. Circ Res 107, 615619.
Schillers, H, Walte, M, Urbanova, K and Oberleithner, H (2010) Real-time monitoring of cell elasticity reveals oscillating myosin activity. Biophys J 99, 36393646.
Sehgel, NL, Sun, Z, Hong, Z, Hunter, WC, Hill, MA, Vatner, DE, Vatner, SF and Meininger, GA (2015) Augmented vascular smooth muscle cell stiffness and adhesion when hypertension is superimposed on aging. Hypertension 65, 370377.
Sehgel, NL, Zhu, Y, Sun, Z, Trzeciakowski, JP, Hong, Z, Hunter, WC, Vatner, DE, Meininger, GA and Vatner, SF (2013) Increased vascular smooth muscle cell stiffness: a novel mechanism for aortic stiffness in hypertension. Am J Physiol Heart Circ Physiol 305, H1281H1287.
Sun, Z, Li, Z and Meininger, GA (2012) Mechanotransduction through fibronectin–integrin focal adhesion in microvascular smooth muscle cells: is calcium essential? Am J Physiol Heart Circ Physiol 302, H1965H1973.
Sun, Z, Martinez-Lemus, LA, Hill, MA and Meininger, GA (2008) Extracellular matrix-specific focal adhesions in vascular smooth muscle produce mechanically active adhesion sites. Am J Physiol Cell Physiol 295, C268C278.
Sun, Z, Martinez-Lemus, LA, Trache, A, Trzeciakowski, JP, Davis, GE, Pohl, U and Meininger, GA (2005) Mechanical properties of the interaction between fibronectin and α5β1-integrin on vascular smooth muscle cells studied using atomic force microscopy. Am J Physiol Heart Circ Physiol 289, H2526H2535.
Uehata, M, Ishizaki, T, Satoh, H, Ono, T, Kawahara, T, Morishita, T, Tamakawa, H, Yamagami, K, Inui, J, Maekawa, M and Narumiya, S (1997) Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 389, 990994.
Yamin, R and Morgan, KG (2012) Deciphering actin cytoskeletal function in the contractile vascular smooth muscle cell. J Physiol 590, 41454154.
Zhu, Y, Qiu, H, Trzeciakowski, JP, Sun, Z, Li, Z, Hong, Z, Hill, MA, Hunter, WC, Vatner, DE, Vatner, SF and Meininger, GA (2012) Temporal analysis of vascular smooth muscle cell elasticity and adhesion reveals oscillation waveforms that differ with aging. Aging Cell 11, 741750.

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed

A correction has been issued for this article: