Skip to main content Accessibility help

Refractive Index Imaging of Cells with Variable-Angle Near-Total Internal Reflection (TIR) Microscopy

  • Kevin P. Bohannon (a1), Ronald W. Holz (a1) and Daniel Axelrod (a2)


The refractive index in the interior of single cells affects the evanescent field depth in quantitative studies using total internal reflection (TIR) fluorescence, but often that index is not well known. We here present method to measure and spatially map the absolute index of refraction in a microscopic sample, by imaging a collimated light beam reflected from the substrate/buffer/cell interference at variable angles of incidence. Above the TIR critical angle (which is a strong function of refractive index), the reflection is 100%, but in the immediate sub-critical angle zone, the reflection intensity is a very strong ascending function of incidence angle. By analyzing the angular position of that edge at each location in the field of view, the local refractive index can be estimated. In addition, by analyzing the steepness of the edge, the distance-to-substrate can be determined. We apply the technique to liquid calibration samples, silica beads, cultured Chinese hamster ovary cells, and primary culture chromaffin cells. The optical technique suffers from decremented lateral resolution, scattering, and interference artifacts. However, it still provides reasonable results for both refractive index (~1.38) and for distance-to-substrate (~150 nm) for the cells, as well as a lateral resolution to about 1 µm.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Refractive Index Imaging of Cells with Variable-Angle Near-Total Internal Reflection (TIR) Microscopy
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Refractive Index Imaging of Cells with Variable-Angle Near-Total Internal Reflection (TIR) Microscopy
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Refractive Index Imaging of Cells with Variable-Angle Near-Total Internal Reflection (TIR) Microscopy
      Available formats


Corresponding author

* Corresponding author.


Hide All
Anantharam, A., Axelrod, D. & Holz, R.W. (2012). Real-time investigation of fusion pore expansion by imaging of plasma membrane deformations. J Neurochem 122, 661671.
Axelrod, D. (1981). Zero cost modification of bright field microscopes for imaging phase gradients on cells: Schlieren optics. Cell Biophys 3, 167173.
Axelrod, D. (2013). Evanescent excitation and emission in fluorescence microscopy. Biophys J 104, 14011409. Correction, 104, 2321.
Axelrod, D., Lerner, D. & Sands, P.J. (1988). Refractive index within the lens of a goldfish eye determined from the paths of thin laser beams. Vision Res 28, 5765.
Backman, V., Wallace, M.B., Perelman, L.T., Arendt, J.T., Gurjar, R., Müller, M.G., Zhang, Q., Zonios, G., Kline, E., McGilligan, T., Shapshay, S., Valdez, T., Badizadegan, K., Crawford, J.M., Fitzmaurice, M., Kabani, M.S., Levin, H.S., Seiler, M., Dasari, R.R., Itzkan, I., Van Dam, J. & Feld, M.S. (2000). Detection of preinvasive cancer cells. Nature 406, 3536.
Bereiter-Hahn, J., Fox, C.H. & Thorell, B. (1979). Quantitative reflection contrast microscopy of living cells. J Cell Biol 82, 767779.
Born, M. & Wolf, E. (1975). Principles of Optics, 5th ed. New York: Pergamon Press. p. 62.
Brunstein, M., Teremetz, M., Herault, K., Tourain, C. & Oheim, M. (2014). Eliminating unwanted far-field excitation in objective-type TIRF. Part I. Identifying sources of nonevanescent excitation light. Biophys J 106, 10201032.
Cherkezyan, C., Subramanian, H. & Backman, V. (2014). What structural length scales can be detected by the spectral variance of a microscope image? Opt Lett 39, 42904293.
Chew, H., Wang, D.-S. & Kerker, M. (1979). Elastic scattering of evanescent electromagnetic waves. App Opt 18, 26792687.
Choi, W., Fang-Yen, C., Badizadegan, K., Oh, S., Lue, N., Dasari, R.R. & Feld, M.S. (2007). Tomographic phase microscopy. Nat Methods 4, 717719.
Curl, C.L., Bellair, C.J., Harris, T., Allman, B.E., Harris, P.J., Stewart, A.G., Roberts, A., Nugent, K.A. & Delbridge, L.M.D. (2005). Refractive index measurement in viable cells using quantitative phase-amplitude microscopy and confocal microscopy. Cytometry, Part A 65, 8892.
Farinas, J., Kneen, M., Moore, M. & Verkman, A.S. (1997). Plasma membrane water permeability of cultured cells and epithelia measured by light microscopy with spatial filtering. J Gen Physiol 110, 283296.
Friedman, R. & Shaked, N.T. (2015). Hybrid reflective interferometric system combining wide-field and single-point phase measurements. IEEE Photonics J 7, 6801413.
Hellen, E.H. & Axelrod, D. (1987). Fluorescence emission at dielectric and metal-film interfaces. J Opt Soc Am B 4, 337350.
Hoffman, R. & Gross, L. (1975). Modulation contrast microscope. Appl Opt 14, 11691176.
Holz, R.W. & Axelrod, D. (2008). Secretory granule behavior adjacent to the plasma membrane before and during exocytosis: Total internal reflection fluorescence studies. Acta Physiol 192, 303307.
Jafarfard, M.R., Moon, S., Tayebi, B. & Kim, D.Y. (2014). Dual-wavelength diffraction phase microscopy for simultaneous measurement of refractive index and thickness. Opt Lett 39, 29082911.
Jenkins, M.H. & Gaylord, T.K. (2015). Quantitative phase microscopy via optimized inversion of the phase optical transfer function. Appl Opt 54, 85668579.
Kienle, D.F., de Souza, J.V., Watkins, E.B. & Kuhl, T.L. (2014). Thickness and refractive index of DPPC and DPPE monolayers by multiple-beam interferometry. Anal Bioanal Chem 406, 47254733.
Kou, S.S., Waller, L., Barbastathis, G. & Sheppard, C.J.R. (2010). Transport-of-intensity approach to differential interference contrast (TI-DIC) microscopy for quantitative phase imaging. Opt Lett 35, 447449.
Lee, K., Kim, K., Jumg, J., Heo, J., Cho, S., Lee, S., Chang, G., Jo, Y., Park, H. & Park, Y. (2013). Quantitative phase imaging techniques for the study of cell pathophysiology: From principles to applications. Sensors 13, 41704191.
Liu, P.Y., Chin, L.K., Ser, W., Chen, H.F., Hsieh, C.M., Lee, C.H., Sung, K.B., Ayi, T.C., Yap, P.H., Liedberg, B., Wang, K., Bourouina, T. & Leprince-Wang, Y. (2016). Cell refractive index for cell biology and disease diagnosis: Past, present and future. Lab Chip 16, 634644.
Loerke, D., Preitz, B., Stuhmer, W. & Oheim, M. (2000). Super-resolution measurements with evanescent-wave fluorescence excitation using variable beam incidence. J Biomed Opt 5, 2330.
Martinez-Torres, C., Laperrousaz, B., Berguiga, L., Boyer-Provera, E., Elezgaray, J., Nicolini, F.E., Maguer-Satta, V., Arneodo, A. & Argoul, F. (2015). Deciphering the internal complexity of living cells with quantitative phase microscopy: A multiscale approach. J Biomed Opt 20, 096005.
Mattheyses, A., Shaw, K.D. & Axelrod, D. (2006). Effective elimination of laser interference fringing in fluorescence microscopy by spinning azimuthal incidence angle. Microsc Res Tech 69, 642647.
McManus, M., Fischbarg, J., Sun, A., Hebert, S. & Strange, K. (1993). Laser light-scattering system for studying cell volume regulation and membrane transport processes. Am J Physiol 265, C562C570.
Mitsui, T. (2005). Scanning laser microscope able to detect the refraction of the laser beam. Jpn J Appl Phys 1 Reg Papers Brief Commun Rev Pap 44, 32793282.
Neto, J.C., Agero, U., Gazzinelli, R.T. & Mesquita, O.N. (2016). Measuring optical and mechanical properties of a living cell with defocusing microscopy. Biophys J 91, 11081115.
Oheim, M., Loerke, D., Preitz, B. & Stuhmer, W. (1999). A simple optical configuration for depth—Resolved imaging using variable angle evanescent-wave microscopy. SPIE 3568, 131140.
Phillips, K.G., Jacques, S.L. & McCarty, O.J.T. (2012). Measurement of single cell refractive index, dry mass, volume, and density using a transillumination microscope. Phys Rev Lett 109, 118105.
Popescu, G. (2011). Quantitative phase imaging of cells and tissues. New York: McGraw Hill.
Rappaz, B., Barbul, A., Charriere, F., Kuehn, J., Marquet, P., Korenstein, R., Depeursinge, C. & Magistretti, P. (2007). Erythrocytes volume and refractive index measurement with a digital holographic microscope – art. no. 644509. In Optical Diagnostics and Sensing VII, Coté, G.L. & Priezzhev, A.V. (Eds.), Proceedings of SPIE 6445, 644509-1-9.
Rappaz, B., Charrière, F., Depeursinge, C., Magistretti, P.J. & Marquet, P. (2008). Simultaneous cell morphometry and refractive index measurement with dual-wavelength digital holographic microscopy and dye-enhanced dispersion of perfusion medium. Opt Lett 33, 744746.
Rappaz, B., Marquet, P., Cuche, E., Emery, Y., Depeursinge, C. & Magistretti, P. (2005). Measurement of the integral refractive index and dynamic cell morphometry of living cells with digital holographic microscopy. Opt Expr 13, 93619373.
Ross, K.F.A. (1954). Measurement of the refractive index of cytoplasmic inclusions in living cells by the interference microscope. Nature 174, 836837.
Steyer, J.A., Horstmann, H. & Almers, W. (1997). Transport, docking and exocytosis of single secretory granules in live chromaffin cells. Nature 388, 474478.
Sun, W., Xu, A., Marchuk, K., Wang, G. & Fang, N. (2011). Whole-cell scan using automatic variable-angle and variable-illumination-depth pseudo-total internal reflection fluorescence microscopy. J Lab Autom 16, 255262.
Tregidgo, C., Levitt, J.A. & Suhling, K. (2008). Effect of refractive index on the fluorescence lifetime of green fluorescent protein. J Biomed Opt 13, 031218.
Tregidgo, C., Suhling, K. & Periasamy, A. (2007). Refractive index sensing using fluorescence lifetime imaging (FLIM). Proc SPIE Multiphoton Microsc Biomed Sci VII 6442, 64420W.
Van Manen, H.-J., Verkuijlen, P., Wittendorp, P., Subramaniam, V., van den Berg, T.K., Roos, D. & Otto, C. (2008). Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy. Biophys J 94, L67L69.
Von Olshausen, P. & Rohrbach, A. (2013). Coherent total internal reflection dark-field microscopy: Label-free imaging beyond the diffraction limit. Opt Lett 38, 40664069.
Wick, P.F., Senter, R.A., Parsels, L.A., Uhler, M.D. & Holz, R.W. (1993). Transient transfection studies of secretion in bovine chromaffin cells and PC12 cells: generation of kainate sensitive chromaffin cells. J Biol Chem 268, 1098310989.
Yanase, Y., Hiragun, T., Kaneko, S., Gould, H.J., Greaves, M.W. & Hide, M. (2010). Detection of refractive index changes in individual living cells by means of surface plasmon resonance imaging. Biosens Bioelectron 26, 674681.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed