Skip to main content Accessibility help

Quantitative Electrochemical Measurements Using In Situ ec-S/TEM Devices

  • Raymond R. Unocic (a1), Robert L. Sacci (a2), Gilbert M. Brown (a3), Gabriel M. Veith (a2), Nancy J. Dudney (a2), Karren L. More (a1), Franklin S. Walden (a4), Daniel S. Gardiner (a4), John Damiano (a4) and David P. Nackashi (a4)...


Insight into dynamic electrochemical processes can be obtained with in situ electrochemical-scanning/transmission electron microscopy (ec-S/TEM), a technique that utilizes microfluidic electrochemical cells to characterize electrochemical processes with S/TEM imaging, diffraction, or spectroscopy. The microfluidic electrochemical cell is composed of microfabricated devices with glassy carbon and platinum microband electrodes in a three-electrode cell configuration. To establish the validity of this method for quantitative in situ electrochemistry research, cyclic voltammetry (CV), choronoamperometry (CA), and electrochemical impedance spectroscopy (EIS) were performed using a standard one electron transfer redox couple [Fe(CN)6]3−/4−-based electrolyte. Established relationships of the electrode geometry and microfluidic conditions were fitted with CV and chronoamperometic measurements of analyte diffusion coefficients and were found to agree with well-accepted values that are on the order of 10−5 cm2/s. Influence of the electron beam on electrochemical measurements was found to be negligible during CV scans where the current profile varied only within a few nA with the electron beam on and off, which is well within the hysteresis between multiple CV scans. The combination of experimental results provides a validation that quantitative electrochemistry experiments can be performed with these small-scale microfluidic electrochemical cells provided that accurate geometrical electrode configurations, diffusion boundary layers, and microfluidic conditions are accounted for.


Corresponding author

* Corresponding Author.


Hide All
Amatore, C. (1995). Electrochemistry at ultramicroelectrodes. In Physical Electrochemistry: Principles, Methods, and Applications, Rubinstein, I. (Ed.), pp. 131208. New York: Marcel Dekker Inc.
Bard, A.J. & Faulkner, L.R. (2001). Electrochemical Methods: Fundamentals and Applications, 2nd ed. New York: John Wiley & Sons Inc.
Beriet, C. & Pletcher, D. (1993). A microelectrode study of the mechanism and kinetics of the ferro/ferricyanide couple in aqueous media: The influence of the electrolyte and its concentration. J Electroanal Chem 361, 93101.
Bond, A.M. & Lay, P.A. (1986). Cyclic voltammetry at microelectrodes in the absence of added electrolyte using a platinum quasi-reference electrode. J Electroanal Chem, 199, 285295.
Chen, X., Noh, K.W., Wen, J.G. & Dillon, S.J. (2012). In situ electrochemical wet cell transmission electron microscopy characterization of solid–liquid interactions between Ni and aqueous NiCl. Acta Materialia, 60, 192198.
Compton, R.G., Fisher, A.C., Geoffrey, W.R., Dobson, P.J. & Leigh, P.A. (1993). Hydrodynamic voltammetry with microelectrodes channel microband electrodes theory and experiment. J Phys Chem Lett, 97, 1041010415.
de Jonge, N. & Ross, F.M. (2011). Electron microscopy of specimens in liquid. Nat Nanotechnol, 6, 695704.
Evans, J.E., Jungjohann, K.L., Browning, N.D. & Arslan, I. (2011). Controlled growth of nanoparticles from solution with in situ liquid transmission electron microscopy. Nano Lett, 11, 28092813.
Franceschetti, D.R. Macdonald, J.R. & Buck, R.P. (1991). Interpretation of finite-length-warburg-type impedances in supported and unsupported electrochemical-cells with kinetically reversible electrodes. J Electrochem Soc, 138, 13681371.
Gabrielli, C., Keddam, M., Portail, N., Rousseau, P., Takenouti, H. & Vivier, V. (2006). Electrochemical impedance spectroscopy investigations of a microelectrode behavior in a thin-layer cell: Experimental and theoretical studies. J Phys Chem B, 110, 2047820485.
Gu, M., Parent, L.R., Mehdi, L., Unocic, R.R., McDowell, M.T., Sacci, R.L., Xu, W., Abellan, P., Chen, X., Zhang, Y., Perea, D.E., Lauhon, L.J., Arslan, I., Zhang, J.G., Cui, Y., Browning, N.D. & Wang, C.M. (2013). Demonstration of an electrochemical liquid cell for operando transmission electron microscopy observation of the lithiation/delithiation behavior of Si nanowire battery anodes. Nano Lett, 13, 61066112.
Harrington, D.A. & van den Driessche, P. (2011). Mechanisms and equivalent circuits in electrochemical impedance spectroscopy. Electrochim Acta, 56, 80058013.
Holtz, M.E., Yu, Y., Gao, J., Abruna, H.D. & Muller, D.E. (2013). In situ electron energy-loss spectroscopy in liquids. Microsc Microanal, 19, 10271035.
Huang, W. & McCreery, R. (1992). Electron transfer kinetics of Fe(CN)6 3−/4− on laser-activated and CN-modified Pt electrodes. J Electroanal Chem, 326, 112.
Hubbard, A.T. & Anson, F.C. (1970). The theory and practice of electrochemistry with thin layer cells. In Electroanalytical Chemistry, vol. 4, Bard, A.J. (Ed.), pp. 129214. New York: Marcel Dekker Inc.
Jungjohann, K.L., Bliznakov, S., Sutter, P.W., Stach, E.A. & Sutter, E.A. (2013). In situ liquid cell electron microscopy of the solution growth of Au–Pd core-shell nanostructures. Nano Lett, 13, 29642970.
Kovach, P.M., Caudill, W.L., Peters, D.G. & Wightman, R.M. (1985). Faradaic electrochemistry at microcylinder, band, and tubular band electrode. J Electroanal Chem, 185, 285295.
Liao, H.G., Cui, L., Whitelam, S. & Zheng, H. (2012). Real-time imaging of Pt3Fe nanorod growth in solution. Science, 336, 10111014.
Nicholson, R.S. & Shain, I. (1964). Theory of stationary electrode polarography. Anal Chem, 36, 706772.
Noh, K.W., Liu, Y., Sun, L. & Dillon, S.J. (2012). Challenges associated with in-situ TEM in environmental systems: The case of silver in aqueous solutions. Ultramicroscopy, 116, 3438.
Parent, L.R., Robinson, D.B., Woehl, T.J., Ristenpart, W.D., Evans, J.E., Browning, N.D. & Arslan, I. (2012). Direct in situ observation of nanoparticle synthesis in a liquid crystal surfactant template. ACS Nano, 6, 35893596.
Ring, E.A. & de Jonge, N. (2010). Microfluidic system for transmission electron microscopy. Microsc Microanal, 16, 622629.
Rooney, M.B., Coomber, D.C. & Bond, A.M. (2000). Achievement of near-reversible behavior for the [Fe(CN)6]3−/4− redox couple using cyclic voltammetry at glassy carbon, gold, and platinum macrodisk electrodes in the absence of added supporting electrolyte. Anal Chem, 72, 34863491.
Seddon, B.J., Eddowes, M.J., Firth, A., Owen, A.E. & Girault, H.H.J. (2009). Thin film electrode: A new method for the fabrication of submicrometer band electrodes. Electrochim Acta, 36, 763771.
White, E.R., Singer, S.B., Augustyn, V., Hubbard, W.A., Mecklenburg, M., Dunn, B. & Regan, B.C. (2012). In situ transmission electron microscopy of lead dendrites and lead ions in aqueous solution. ACS Nano, 6, 63086317.
Williamson, M.J., Tromp, R.M., Vereecken, P.M., Hull, R. & Ross, F.M. (2003). Dynamic microscopy of nanoscale cluster growth at the solid–liquid interface. Nat Mater, 2, 532536.
Woehl, T.J., Evans, J.E., Arslan, I., Ristenpart, W.D. & Browning, N.D. (2012). Direct in situ determination of the mechanisms controlling nanoparticle nucleation and growth. ACS Nano, 6, 85998610.
Woehl, T.J., Jungjohann, K.L., Evans, J.E., Arslan, I., Ristenpart, W.D. & Browning, N.D. (2013). Experimental procedures to mitigate electron beam induced artifacts during in situ fluid imaging of nanomaterials. Ultramicroscopy, 127, 5363.
Zheng, H., Smith, R.K., Jun, Y.W., Kisielowski, C., Dahmen, U. & Alivisatos, A.P. (2009). Observation of single colloidal platinum nanocrystal growth trajectories. Science, 324, 13091312.


Quantitative Electrochemical Measurements Using In Situ ec-S/TEM Devices

  • Raymond R. Unocic (a1), Robert L. Sacci (a2), Gilbert M. Brown (a3), Gabriel M. Veith (a2), Nancy J. Dudney (a2), Karren L. More (a1), Franklin S. Walden (a4), Daniel S. Gardiner (a4), John Damiano (a4) and David P. Nackashi (a4)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed