Skip to main content Accessibility help
×
Home

Quantitative Determination of How Growth Conditions Affect the 3D Composition of InGaAs Nanowires

  • Jiangtao Qu (a1) (a2), Hansheng Chen (a1) (a2), Mansoor Khan (a1) (a2), Fan Yun (a1) (a2), Xiangyuan Cui (a3), Simon P. Ringer (a3), Julie M. Cairney (a3) and Rongkun Zheng (a1) (a2)...

Abstract

Covering a broad optical spectrum, ternary InxGa1−xAs nanowires, grown by bottom-up methods, have been receiving increasing attention due to the tunability of the bandgap via In composition modulation. However, inadequate knowledge about the correlation between growth and properties restricts our ability to take advantage of this phenomenon for optoelectronic applications. Here, three different InGaAs nanowires were grown under different experimental conditions and atom probe tomography was used to quantify their composition, allowing the direct observation of the nanowire composition associated with the different growth conditions.

Copyright

Corresponding author

*Author for correspondence: Rongkun Zheng, E-mail: rongkun.zheng@sydney.edu.au

References

Hide All
Agrawal, R, Bernal, RA, Isheim, D & Espinosa, HD (2011). Characterizing atomic composition and dopant distribution in wide band gap semiconductor nanowires using laser-assisted atom probe tomography. J Phys Chem C 115(36), 1768817694.
Chen, R & Dayeh, SA (2017). Recordings and analysis of atomic ledge and dislocation movements in InGaAs to nickelide nanowire phase transformation. Small 13(30), 1604117.
Chou, YC, Wen, CY, Reuter, MC, Su, D, Stach, EA & Ross, FM (2012). Controlling the growth of Si/Ge nanowires and heterojunctions using silver-gold alloy catalysts. ACS Nano 6(7), 64076415.
Cui, X-Y & Ringer, SP (2018). On the nexus between atom probe microscopy and density functional theory simulations. Mater Charact 146, 347358.
Dasgupta, NP, Sun, J, Liu, C, Brittman, S, Andrews, SC, Lim, J, Gao, H, Yan, R & Yang, P (2014). 25th anniversary article: Semiconductor nanowires--synthesis, characterization, and applications. Adv Mater 26(14), 21372184.
Diercks, D, Gorman, BP, Cheung, CL & Wang, G (2009). Techniques for consecutive TEM and atom probe tomography analysis of nanowires. Microsc Microanal 15(S2), 254255.
Du, S, Burgess, T, Loi, ST, Gault, B, Gao, Q, Bao, P, Li, L, Cui, X, Kong Yeoh, W, Tan, HH, Jagadish, C, Ringer, SP & Zheng, R (2013). Full tip imaging in atom probe tomography. Ultramicroscopy 124, 96101.
Ek, M & Filler, MA (2017). Atomic-scale choreography of vapor-liquid-solid nanowire growth. Acc Chem Res 51(1), 118126.
Frolov, IA, Boldyrevskii, PB, Druz, BL & Sokolov, EB (1977). Mechanism of epitaxial-growth of Gaas in system Ga(Ch3)3-Ash3-H2. Inorg Mater 13(5), 632634.
Gault, B, Moody, MP, Cairney, JM & Ringer, SP (2012). Atom Probe Microscopy. New York: Springer-Verlag New York.
Guo, YN, Burgess, T, Gao, Q, Tan, HH, Jagadish, C & Zou, J (2013 a). Polarity-driven nonuniform composition in InGaAs nanowires. Nano Lett 13(11), 50855089.
Guo, YN, Xu, HY, Auchterlonie, GJ, Burgess, T, Joyce, HJ, Gao, Q, Tan, HH, Jagadish, C, Shu, HB, Chen, XS, Lu, W, Kim, Y & Zou, J (2013 b). Phase separation induced by Au catalysts in ternary InGaAs nanowires. Nano Lett 13(2), 643650.
Han, HS, Han, GS, Kim, JS, Kim, DH, Hong, JS, Caliskan, S, Jung, HS, Cho, IS & Lee, JK (2016). Indium-tin-oxide nanowire array based CdSe/CdS/TiO2 one-dimensional heterojunction photoelectrode for enhanced solar hydrogen production. Acs Sustain Chem Eng 4(3), 11611168.
Henkelman, G, Uberuaga, BP & Jonsson, H (2000). A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J Chem Phys 113(22), 99019904.
Heurlin, M, Stankevic, T, Mickevicius, S, Yngman, S, Lindgren, D, Mikkelsen, A, Feidenhans'l, R, Borgstrom, MT & Samuelson, L (2015). Structural properties of Wurtzite InP-InGaAs nanowire core-shell heterostructures. Nano Lett 15(4), 24622467.
Hiscocks, SER & Hume-Rothery, W (1964). The equilibrium diagram of the system gold-indium. Proc R Soc A: Math, Phys and Eng Sci 282(1390), 13.
Huang, X, Wang, ZJ, Weinberg, G, Meng, XM & Willinger, MG (2015). In situ scanning electron microscopy observation of growth kinetics and catalyst splitting in vapor-liquid-solid growth of nanowires. Adv Funct Mater 25(37), 59795987.
Jiang, N, Wong-Leung, J, Joyce, HJ, Gao, Q, Tan, HH & Jagadish, C (2014). Understanding the true shape of Au-catalyzed GaAs nanowires. Nano Lett 14(10), 58655872.
Kim, H, Lee, WJ, Farrell, AC, Morales, JSD, Senanayake, P, Prikhodko, SV, Ochalski, TJ & Huffaker, DL (2017). Monolithic InGaAs nanowire array lasers on silicon-on-insulator operating at room temperature. Nano Lett 17(6), 34653470.
Kim, Y, Joyce, HJ, Gao, O, Tan, HH, Jagadish, C, Paladugu, M, Zou, J & Suvorova, AA (2006). Influence of nanowire density on the shape and optical properties of ternary InGaAs nanowires. Nano Lett 6(4), 599604.
Kresse, G & Furthmuller, J (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B 54(16), 1116911186.
Krylyuk, S, Davydov, AV & Levin, I (2011). Tapering control of Si nanowires grown from SiCl4 at reduced pressure. ACS Nano 5(1), 656664.
Larsen, CA, Buchan, NI & Stringfellow, GB (1988). Reaction-mechanisms in the organometallic vapor-phase epitaxial-growth of Gaas. Appl Phys Lett 52(6), 480482.
Larson, DJ, Prosa, TJ, Ulfig, RM, Geiser, BP & Kelly, TF (2013). Local Electrode Atom Probe Tomography. New York: Springer-Verlag.
Lim, JW, Hippalgaonkar, K, Andrews, SC, Majumdar, A & Yang, PD (2012). Quantifying surface roughness effects on phonon transport in silicon nanowires. Nano Lett 12(5), 24752482.
MacDonald, E & Wicker, R (2016). Multiprocess 3D printing for increasing component functionality. Science 353(6307), aaf2093.
Maliakkal, CB, Hatui, N, Bapat, RD, Chalke, BA, Rahman, AA & Bhattacharya, A (2016). The mechanism of Ni-assisted GaN nanowire growth. Nano Lett 16(12), 76327638.
Martin, JH, Yahata, BD, Hundley, JM, Mayer, JA, Schaedler, TA & Pollock, TM (2017). 3D printing of high-strength aluminium alloys. Nature 549(7672), 365-+.
McHugh, KJ, Nguyen, TD, Linehan, AR, Yang, D, Behrens, AM, Rose, S, Tochka, ZL, Tzeng, SY, Norman, JJ, Anselmo, AC, Xu, X, Tomasic, S, Taylor, MA, Lu, J, Guarecuco, R, Langer, R & Jaklenec, A (2017). Fabrication of fillable microparticles and other complex 3D microstructures. Science 357(6356), 1138-+.
Nagashima, K, Yoshida, H, Klamchuen, A, Kanai, M, Meng, G, Zhuge, FW, He, Y, Anzai, H, Zhu, ZT, Suzuki, M, Boudot, M, Takeda, S & Yanagida, T (2016). Tailoring nucleation at two interfaces enables single crystalline NiO nanowires via vapor liquid solid route. ACS Appl Mater Interfaces 8(41), 2789227899.
Perdew, JP, Burke, K & Ernzerhof, M (1996). Generalized gradient approximation made simple. Phys Rev Lett 77(18), 38653868.
Persson, AI, Larsson, MW, Stenstrom, S, Ohlsson, BJ, Samuelson, L & Wallenberg, LR (2004). Solid-phase diffusion mechanism for GaAs nanowire growth. Nat Mater 3(10), 677681.
Qu, J, Du, S, Burgess, T, Wang, C, Cui, X, Gao, Q, Wang, W, Tan, HH, Liu, H, Jagadish, C, Zhang, Y, Chen, H, Khan, M, Ringer, S & Zheng, R (2017). 3D atomic-scale insights into anisotropic core-shell-structured InGaAs nanowires grown by metal-organic chemical vapor deposition. Adv Mater 29, 1701888.
Qu, JT, Choi, W, Mohseni, PK, Li, XL, Zhang, YJ, Chen, HS, Ringer, S & Zheng, RK (2016). Direct observation of dopants distribution and diffusion in GaAs planar nanowires with atom probe tomography. ACS Appl Mater Interfaces 8(39), 2624426250.
Qu, JT, Ringer, S & Zheng, RK (2015). Atomic-scale tomography of semiconductor nanowires. Mater Sci Semicond Process 40, 896909.
Shen, LF, Yip, S, Yang, ZX, Fang, M, Hung, T, Pun, EYB & Ho, JC (2015). High-performance wrap-gated InGaAs nanowire field-effect transistors with sputtered dielectrics. Sci Rep 5, 16871.
Sugiyama, M, Kusunoki, K, Shimogaki, Y, Sudo, S, Nakano, Y, Nagamoto, H, Sugawara, K, Tada, K & Komiyama, H (1997). Kinetic studies on thermal decomposition of MOVPE sources using Fourier transform infrared spectroscopy. Appl Surf Sci 117, 746752.
Svensson, J, Dey, AW, Jacobsson, D & Wernersson, LE (2015). III-V nanowire complementary metal-oxide semiconductor transistors monolithically integrated on Si. Nano Lett 15(12), 78987904.
Wagner, RS & Ellis, WC (1964). Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4(5), 8990.
Wallentin, J, Anttu, N, Asoli, D, Huffman, M, Aberg, I, Magnusson, MH, Siefer, G, Fuss-Kailuweit, P, Dimroth, F, Witzigmann, B, Xu, HQ, Samuelson, L, Deppert, K & Borgstrom, MT (2013). Inpnanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit. Science 339(6123), 10571060.
Wang, CY, Zhang, GS, Ge, SH, Xu, T, Ji, Y, Yang, XG & Leng, YJ (2016). Lithium-ion battery structure that self-heats at low temperatures. Nature 529(7587), 515.
Wibowo, E, Othaman, Z, Sakrani, S & Sumpono, I (2011). The advantage of low growth temperature and V/III ratio for InxGa1-xAs nanowires growth. Nano 6(2), 159165.
Yang, P, Yan, R & Fardy, M (2010). Semiconductor nanowire: What's next? Nano Lett 10(5), 15291536.
Yang, ZX, Liu, LZ, Yip, SP, Li, DP, Shen, LF, Zhou, ZY, Han, N, Hung, TF, Pun, EYB, Wu, XL, Song, AM & Ho, JC (2017). Complementary metal oxide semiconductor-compatible, high-mobility, <111>-oriented GaSb nanowires enabled by vapor-solid-solid chemical vapor deposition. ACS Nano 11(4), 42374246.
Zhang, Y, Sanchez, AM, Wu, J, Aagesen, M, Holm, JV, Beanland, R, Ward, T & Liu, H (2015). Polarity-driven quasi-3-fold composition symmetry of self-catalyzed III-V-V ternary core-shell nanowires. Nano Lett 15(5), 31283133.
Zou, J, Paladugu, M, Wang, H, Auchterlonie, GJ, Guo, YN, Kim, Y, Gao, Q, Joyce, HJ, Tan, HH & Jagadish, C (2007). Growth mechanism of truncated triangular III-V nanowires. Small 3(3), 389393.

Keywords

Type Description Title
WORD
Supplementary materials

Qu et al. supplementary material
Qu et al. supplementary material 1

 Word (5.8 MB)
5.8 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed