Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-18T23:13:12.270Z Has data issue: false hasContentIssue false

Prospects for Vibrational-Mode EELS with High Spatial Resolution

Published online by Cambridge University Press:  19 February 2014

R.F. Egerton*
Affiliation:
Physics Department, University of Alberta, Edmonton, Canada T6G 2E1
*
*Corresponding author. regerton@ualberta.ca
Get access

Abstract

Taking advantage of previous measurements by Geiger and co-workers, we discuss the possibilities and problems of measuring vibrational modes of energy loss in a transmission electron microscope fitted with a monochromator and a high-resolution energy-loss spectrometer. The tail of the zero-loss peak is seen to be a major limitation, rather than its full-width at half-maximum. Because of the low oscillator strengths and small cross-sections involved, radiation damage will limit the spatial resolution if this technique is applied to organic specimens. Delocalization of the inelastic scattering may also be a limitation, if a dipole description of the scattering process is valid.

Type
EDGE Special Issue
Copyright
© Microscopy Society of America 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguiar, J.A., Reed, B.W., Ramasse, Q.M., Erni, R. & Browning, N.D. (2013). Quantifying the low-energy limit and spectral resolution in valence electron energy loss spectroscopy. Ultramicroscopy 124, 130138.CrossRefGoogle ScholarPubMed
Boersch, H., Geiger, J. & Bohg, A. (1969). Wechselwirkung von Elektronen mit Gitterschwingungen in Ammoniumchlorid und Ammoniumbromid. Z Physik 227, 141151.Google Scholar
Boersch, H., Geiger, J. & Hellwig, H. (1962). Steigerung der Auflösung bei der Elektronen-Energieanalyse. Phys Lett 3, 6466.Google Scholar
Boersch, H., Geiger, J. & Stickel, W. (1964). Anregung von Molekülschwingungen durch schnelle Elektronen. Phys Lett 10, 285286.Google Scholar
Boersch, H., Geiger, J. & Stickel, W. (1966). Interaction of 25-keV electrons with lattice vibrations in LiF. Experimental evidence for surface modes of lattice vibration. Phys Rev Lett 17, 379381.Google Scholar
Boersch, H., Wolter, R. & Schoenbeck, H. (1967). Elastische Energieverluste kristallgestreuter Elektronen. Z Physik 199, 124134.CrossRefGoogle Scholar
Cueva, P. & Muller, D.A. (2013). Atomic-scale optical and vibrational spectroscopy with low loss EELS. Proc EDGE 2013 Meeting, Sainte Maxime, France, p. T8.Google Scholar
Dorozhkin, P., Kuznetsov, E., Schokin, A., Timofeev, S. & Bykov, V. (2010). AFM+Raman microscopy+SNOM+tip-enhanced Raman: Instrumentation and applications. Microsc Today 18, 2832.CrossRefGoogle Scholar
Egerton, R.F. (2011). Electron Energy-Loss Spectroscopy in the Electron Microscope. New York: Springer, pp. 68, 112.CrossRefGoogle Scholar
Egerton, R.F. (2013). Control of radiation damage in the TEM. Ultramicroscopy 127, 100128.CrossRefGoogle ScholarPubMed
Egerton, R.F., McLeod, R., Wang, F. & Malac, M. (2010). Basic questions related to electron-induced sputtering in the TEM. Ultramicroscopy 110, 991997.CrossRefGoogle Scholar
Essers, E., Benner, G., Mandler, T., Meyer, S., Mittmann, D., Schnell, M. & Höschen, R. (2010). Energy resolution of an omega-type monochromator and imaging properties of the Mandoline filter. Ultramicroscopy 110, 971980.Google Scholar
Geiger, J. & Jakobs, R.-H. (1974). Phonenspektroskopie von Ammoniumchlorid und Ammoniumbromid mit keV-Elektronen. Z Physik 271, 323328.CrossRefGoogle Scholar
Geiger, J. & Katterwe, H. (1976). Differences in the interaction of fast electrons with crystalline and amorphous titanium oxide films. Thin Solid Films 32, 359361.Google Scholar
Geiger, J. & Katterwe, H. (1978). Electron energy loss study of titanium dioxide, barium titanate and silica in the range between 0.02 and 2 eV. Z Physik 29, 113120.Google Scholar
Geiger, J., Katterwe, H. & Schröder, B. (1971). Elektronenenergievelustspektren von Graphiteinkristallen und Kohlenstoffaufdampfschickten im Bereich 0.02—0.4 eV. Z Physik 241, 4554.CrossRefGoogle Scholar
Geiger, J. & Wittmaack, K. (1965). Wirkungsquerschnitte für die Anregung von Molekülschwingungen durch schbnelle Eletronen. Z Physik 187, 433443.CrossRefGoogle Scholar
Ibach, H. (2006). Physics of Surfaces and Interfaces. Berlin: Springer-Verlag. ISBN-13 978-3-540- 34709-5.Google Scholar
Katterwe, H. (1972). Object analysis by electron energy spectroscopy in the infra-red region. In Electron Microscopy—1972, Cosslett, V.E. (Ed.), pp. 154155. London: The Institute of Physics.Google Scholar
Kirkland, A., Warner, J., Kim, J.S., Nellist, P., Mukai, M., Sawada, H., Kaneyama, T., Omoto, K., Kimura, A., Ikeda, A. & Zhou, J. (2013). The design and performance of a double Wien filter monochromator for application in TEM. Proc. M&M-2013. Ultramicroscopy (in press).Google Scholar
Krivanek, O.L., Lovejoy, T.C., Dellby, N. & Carpenter, R.W. (2013). Monochromated STEM with a 30 meV-wide, atom-sized electron probe. Microscopy 62, 321.CrossRefGoogle ScholarPubMed
Krivanek, O.L., Ursin, J.P., Bacon, N.J., Corbin, G.J., Dellby, N., Hrncirik, P., Murfitt, M.F., Own, C.S. & Szilagyi, Z.S. (2009). High-energy-resolution monochromator for aberration-corrected scanning transmission electron microscopy/electron energy-loss spectroscopy. Phil Trans R Soc A 367, 36833697.Google Scholar
Le Ru, E.C. & Etchegoin, P.G. (2013). Quantifying SERS enhancements. MRS Bulletin 38, 631640.Google Scholar
Mayet, C., Dazzi, A., Prazeres, R., Allot, F., Glotin, F. & Ortega, J.M. (2008). Sub-100nm IR spectromicroscopy of living cells. Optics Lett 33, 16111613.Google Scholar
Reimer, L. & Kohl, H. (2008). Transmission Electron Microscopy , 5th ed. Springer, Heidelberg, pp. 474, 151.Google Scholar
Rez, P. (2013). What can we do with meV energy resolution? Proc . EDGE 2013 Meeting, Sainte Maxime, France, p. T6.Google Scholar
Rossouw, D. & Botton, G.A. (2013). Plasmonic response of bent silver nanowires for nanophotonic subwavelength waveguiding. Phys Rev Lett 110, 066801.Google Scholar
Schröder, B. (1972). Electron-spectroscopic study of amorphous germanium and silicon films at energy losses below 1eV. In Electron Microscopy—1972, Cosslett, V.E. (Ed.), pp. 154155. London: The Institute of Physics.Google Scholar
Schröder, B. & Geiger, J. (1972). Electron-spectrometric study of amorphous germanium and silicon in the two-phonon region. Phys Rev Lett 28, 301303.CrossRefGoogle Scholar
Schröder, B., Geiger, J. & Müller, H.W. (1978). Microanalysis of amorphous semiconductor films. In Proc. 9th Int. Cong. Electron Microscopy, Microscopical Society of Canada, Toronto, vol. 1, pp. 534−535.CrossRefGoogle Scholar
Terauchi, M., Tanaka, M., Tsuno, K. & Ishida, M. (1999). Development of a high energy resolution electron energy-loss spectroscopy microscope. J Microsc 194, 203209.Google Scholar
Tiemeijer, P.C. (1999). Measurement of Coulomb interactions in an electron beam monochromator. Ultramicroscopy 78, 5362.Google Scholar