Skip to main content Accessibility help

Practical Aspects of Removing the Effects of Elastic and Thermal Diffuse Scattering from Spectroscopic Data for Single Crystals

  • Nathan R. Lugg (a1) (a2), Melissa J. Neish (a1), Scott D. Findlay (a3) and Leslie J. Allen (a1)


A method to remove the effects of elastic and thermal diffuse scattering (TDS) of the incident electron probe from electron energy-loss and energy-dispersive X-ray spectroscopy data for atomically resolved spectrum images of single crystals of known thickness is presented. By calculating the distribution of the probe within a specimen of known structure, it is possible to deconvolve the channeling of the probe and TDS from experimental data by reformulating the inelastic cross-section as an inverse problem. In electron energy-loss spectroscopy this allows valid comparisons with first principles fine-structure calculations to be made. In energy-dispersive X-ray spectroscopy, direct compositional analyses such as ζ-factor and Cliff–Lorimer k-factor analysis can be performed without the complications of channeling and TDS. We explore in detail how this method can be incorporated into existing multislice programs, and demonstrate practical considerations in implementing this method using a simulated test specimen. We show the importance of taking into account the scattering of the probe in k-factor analysis in a zone axis orientation. The applicability and limitations of the method are discussed.


Corresponding author

* Corresponding author.


Hide All
Allen, L.J., D’Alfonso, A.J., Freitag, B. & Klenov, D.O. (2012). Chemical mapping at atomic resolution using energy-dispersive X-ray spectroscopy. MRS Bull 37, 4752.
Bocher, L., Popova, E., Nolan, M., Gloter, A., Chikoidze, E., March, K., Warot-Fonrose, B., Berini, B., Stéphan, O., Keller, N. & Dumont, Y. (2013). Direct evidence of Fe2+-Fe3+ charge ordering in the ferrimagnetic hematite-ilmenite Fe1.35Ti0.65O3-δ thin films. Phys Rev Lett 111, 167202.
Bosman, M., Keast, V.J., García-Muñoz, J.L., D’Alfonso, A.J., Findlay, S.D. & Allen, L.J. (2007). Two-dimensional mapping of chemical information at atomic resolution. Phys Rev Lett 99, 086102.
Chu, M.-W., Liou, S.C., Chang, C.-P., Choa, F.-S. & Chen, C.H. (2010). Emergent chemical mapping at atomic-column resolution by energy-dispersive X-ray spectroscopy in an aberration-corrected electron microscope. Phys Rev Lett 104, 196101.
Cliff, G. & Lorimer, G.W. (1975). The quantitative analysis of thin specimens. J. Microsc 103, 203207.
Cover, T. & Thomas, J. (1991). Elements of Information Theory. New York, NY, USA: Wiley Interscience.
D’Alfonso, A.J., Freitag, B., Klenov, D. & Allen, L.J. (2010). Atomic-resolution chemical mapping using energy-dispersive X-ray spectroscopy. Phys Rev B 81, 100101.
Dwyer, C. & Etheridge, J. (2003). Scattering of Å-scale electron probes in silicon. Ultramicroscopy 96, 343360.
Dwyer, C., Maunders, C., Zheng, C.L., Weyland, M., Tiemeijer, P.C. & Etheridge, J. (2012). Sub-0.1 nm-resolution quantitative scanning transmission electron microscopy without adjustable parameters. Appl Phys Lett 100(19), 191915.
Findlay, S.D., Oxley, M.P. & Allen, L.J. (2008). Modeling atomic-resolution scanning transmission electron microscopy images. Microsc Microanal 14(1), 4859.
Forbes, B.D., D’Alfonso, A.J., Williams, R.E.A., Srinivasan, R., Fraser, H.L., McComb, D.W., Freitag, B., Klenov, D.O. & Allen, L.J. (2012). Contribution of thermally scattered electrons to atomic resolution elemental maps. Phys Rev B 86, 024108.
Forbes, B.D., Martin, A.V., Findlay, S.D., D’Alfonso, A.J. & Allen, L.J. (2010). Quantum mechanical model for phonon excitation in electron diffraction and imaging using a Born-Oppenheimer approximation. Phys Rev B 82, 104103.
Gazquez, J., Luo, W., Oxley, M.P., Prange, M., Torija, M.A., Sharma, M., Leighton, C., Pantelides, S.T., Pennycook, S.J. & Varela, M. (2011). Atomic-resolution imaging of spin-state superlattices in nanopockets within cobaltite thin films. Nano Lett 11(3), 973976.
Gulsoy, E.B., Simmons, J.P. & De Graef, M. (2009). Application of joint histogram and mutual information to registration and data fusion problems in serial sectioning microstructure studies. Scripta Mater 60(6), 381384.
Hansen, P.C. (2010). Discrete Inverse Problems. Philadelphia, PA, USA: Society for Industrial and Applied Mathematics.
Haruta, M., Kurashima, K., Nagai, T., Komatsu, H., Shimakawa, Y., Kurata, H. & Kimoto, K. (2012). Visualization of hybridization states with atomic resolution using electron energy loss spectroscopy mapping. Appl Phys Lett 100(16), 163107.
Haruta, M., Nagai, T., Lugg, N.R., Neish, M.J., Nagao, M., Kurashima, K., Allen, L.J., Mizoguchi, T. & Kimoto, K. (2013). Atomic resolution chemical bond analysis of oxygen in La2CuO4 . J Appl Phys 114(8), 083712.
Kim, S., Oshima, Y., Sawada, H., Kaneyama, T., Kondo, Y., Takeguchi, M., Nakayama, Y., Tanishiro, Y. & Takayanagi, K. (2011). Quantitative annular dark-field STEM images of a silicon crystal using a large-angle convergent electron probe with a 300-kV cold field-emission gun. J Electron Micros 60(2), 109116.
Kimoto, K., Asaka, T., Nagai, T., Saito, M., Matsui, Y. & Ishizuka, K. (2007). Element-selective imaging of atomic columns in a crystal using STEM and EELS. Nature 450, 702704.
Kirkland, E.J. (2010). Advanced Computing in Electron Microscopy, 2nd ed. New York, NY, USA: Springer.
Klenov, D.O. & Zide, J.M.O. (2011). Structure of the InAlAs/InP interface by atomically resolved energy dispersive spectroscopy. Appl Phys Lett 99(14), 141904.
Kohl, H. & Rose, H. (1985). Theory of image formation by inelastic scattered electrons in the electron microscope. Adv Imaging Electron Phys 65, 173227.
Krause, M.O. (1979). Atomic radiative and radiationless yields for K and L shells. J Phys Chem Ref Data 8(2), 307327.
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2008). Quantitative atomic resolution scanning transmission electron microscopy. Phys Rev Lett 100, 206101.
LeBeau, J.M., Findlay, S.D., Allen, L.J. & Stemmer, S. (2010). Position averaged convergent beam electron diffraction: Theory and applications. Ultramicroscopy 110(2), 118125.
Lugg, N.R., Haruta, M., Neish, M.J., Findlay, S.D., Mizoguchi, T., Kimoto, K. & Allen, L.J. (2012). Removing the effects of elastic and thermal scattering from electron energy-loss spectroscopic data. Appl Phys Lett 101(18), 183112.
Muller, D.A., Fitting Kourkoutis, L., Murfitt, M., Song, J.H., Hwang, H.Y., Silcox, J., Dellby, N. & Krivanek, O.L. (2008). Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319(5866), 10731076.
Muller, D.A. & Silcox, J. (1995). Delocalization in inelastic scattering. Ultramicroscopy 59(1–4), 195213.
Mundy, J.A., Mao, Q., Brooks, C.M., Schlom, D.G. & Muller, D.A. (2012). Atomic-resolution chemical imaging of oxygen local bonding environments by electron energy loss spectroscopy. Appl Phy Lett 101(4), 042907.
Neish, M.J., Lugg, N.R., Findlay, S.D., Haruta, M., Kimoto, K. & Allen, L.J. (2013). Detecting the direction of oxygen bonding in SrTiO3 . Phys Rev B 88, 115120.
Prange, M.P., Oxley, M.P., Varela, M., Pennycook, S.J. & Pantelides, S.T. (2012). Simulation of spatially resolved electron energy loss near-edge structure for scanning transmission electron microscopy. Phys Rev Lett 109, 246101.
Press, W.H., Flannery, B.P., Teukolsky, S.A. & Vetterling, W.T. (1992). Numerical Recipes in Fortran 77: The Art of Scientific Computing, 2nd ed. Cambridge: Cambridge University Press.
Rosenauer, A., Gries, K., Müller, K., Pretorius, A., Schowalter, M., Avramescu, A., Engl, K. & Lutgen, S. (2009). Measurement of specimen thickness and composition in using high-angle annular dark field images. Ultramicroscopy 109(9), 11711182.
Tan, H., Turner, S., Yücelen, E., Verbeeck, J. & Van Tendeloo, G. (2011). 2D atomic mapping of oxidation states in transition metal oxides by scanning transmission electron microscopy and electron energy-loss spectroscopy. Phys Rev Lett 107, 107602.
Turner, S., Verbeeck, J., Ramezanipour, F., Greedan, J.E., Van Tendeloo, G. & Botton, G.A. (2012). Atomic resolution coordination mapping in Ca2FeCoO5 brownmillerite by spatially resolved electron energy-loss spectroscopy. Chem Mater 24(10), 19041909.
Varela, M., Oxley, M.P., Luo, W., Tao, J., Watanabe, M., Lupini, A.R., Pantelides, S.T. & Pennycook, S.J. (2009). Atomic-resolution imaging of oxidation states in manganites. Phys Rev B 79, 085117.
Verbeeck, J., Béché, A. & Van den Broek, W. (2012). A holographic method to measure the source size broadening in STEM. Ultramicroscopy 120, 3540.
Watanabe, M. & Williams, D.B. (2006). The quantitative analysis of thin specimens: A review of progress from the Cliff-Lorimer to the new ζ-factor methods. J Microsc 221(2), 89109.
Witte, C., Findlay, S.D., Oxley, M.P., Rehr, J.J. & Allen, L.J. (2009). Theory of dynamical scattering in near-edge electron energy loss spectroscopy. Phys Rev B 80, 184108.
Xin, H.L., Zhu, Y. & Muller, D.A. (2012). Determining on-axis crystal thickness with quantitative position-averaged incoherent bright-field signal in an aberration-corrected STEM. Microsc Microanal 18, 720727.
Zhu, Y., Soukiassian, A., Schlom, D.G., Muller, D.A. & Dwyer, C. (2013). Towards artifact-free atomic-resolution elemental mapping with electron energy-loss spectroscopy. Appl Phys Lett 103(14), 141908.


Related content

Powered by UNSILO

Practical Aspects of Removing the Effects of Elastic and Thermal Diffuse Scattering from Spectroscopic Data for Single Crystals

  • Nathan R. Lugg (a1) (a2), Melissa J. Neish (a1), Scott D. Findlay (a3) and Leslie J. Allen (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.