Skip to main content Accessibility help
×
×
Home

Phase Identification of Dual-Phase (DP980) Steels by Electron Backscatter Diffraction and Nanoindentation Techniques

  • Fan Zhang (a1), Annie Ruimi (a2) and David P. Field (a1)

Abstract

Phase identification of multi-phase materials provides essential information relating the material to its mechanical properties. In this study we selected DP980, a type of dual-phase steel, to investigate the content of martensite and ferrite grains. A combination of advanced techniques was used to provide detailed and precise information of the microstructure. Scanning and transmission electron microscopy were used to provide observations of the sample surface at different scales. Martensite and ferrite phases of DP980 were further identified and characterized using electron backscatter diffraction and scanning probe microscopy. Results obtained with nanoindentation tests confirmed that the differences in nanohardness values in single-phase grains are martensite and ferrite with different surface heights shown by scanning probe microscopy. The similarity shown in the image quality map and scanning probe microscopy proves that a large fraction of martensite can be distinguished in this undeformed material using image quality parameters obtained during electron backscatter diffraction imaging.

Copyright

Corresponding author

*Corresponding author. fan.zhang@wsu.edu

References

Hide All
Adams, B.L. (1997). Orientation imaging microscopy: Emerging and future applications. Ultramicroscopy 67, 1117.
Angeli, J., Fureder, E., Panholzer, M. & Kneissl, A.C. (2006). Etching techniques for characterizing the phases of low-alloy dual-phase and TRIP steels. Praktische Metallographie 43, 489504.
Bag, A., Ray, K. & Dwarakadasa, E. (1999). Influence of martensite content and morphology on tensile and impact properties of high-martensite dual-phase steels. Metall Mater Trans A 30, 11931202.
Byun, T.S. & Kim, I.S. (1993). Tensile properties and inhomogeneous deformation of ferrite-martensite dual-phase steels. J Mater Sci 28, 29232932.
Calcagnotto, M., Adachi, Y., Ponge, D. & Raabe, D. (2011). Deformation and fracture mechanisms in fine-and ultrafine-grained ferrite/martensite dual-phase steels and the effect of aging. Acta Mater 59, 658670.
Calcagnotto, M., Ponge, D., Demir, E. & Raabe, D. (2010). Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater Sci Eng A 527, 27382746.
Choi, S.-H., Kim, E.-Y., Woo, W., Han, S. & Kwak, J. (2013). The effect of crystallographic orientation on the micromechanical deformation and failure behaviors of DP980 steel during uniaxial tension. Int J Plast 45, 85102.
Cong, Z., Jia, N., Sun, X., Ren, Y., Almer, J. & Wang, Y. (2009). Stress and strain partitioning of ferrite and martensite during deformation. Metall Mater Trans A 40, 13831387.
De, A.K., Speer, J.G. & Matlock, D.K. (2003). Color tint-etching for multiphase steels. Adv Mater Processes 161, 2730.
De Meyer, M., Kestens, L. & De Cooman, B. (2001). Texture development in cold rolled and annealed C-Mn-Si and C-Mn-Al-Si TRIP steels. Mater Sci Technol 17, 13531359.
Dillien, S., Seefeldt, M., Allain, S., Bouaziz, O. & Van Houtte, P. (2010). EBSD study of the substructure development with cold deformation of dual phase steel. Mater Sci Eng A 527, 947953.
Field, D.P. (1997). Recent advances in the application of orientation imaging. Ultramicroscopy 67, 19.
Ghassemi-Armaki, H., Maaß, R., Bhat, S., Sriram, S., Greer, J. & Kumar, K. (2014). Deformation response of ferrite and martensite in a dual-phase steel. Acta Mater 62, 197211.
Girault, E., Jacques, P., Harlet, P., Mols, K., Van Humbeeck, J., Aernoudt, E. & Delannay, F. (1998). Metallographic methods for revealing the multiphase microstructure of TRIP-assisted steels. Mater Charact 40, 111118.
Hutchinson, B., Ryde, L., Lindh, E. & Tagashira, K. (1998). Texture in hot rolled austenite and resulting transformation products. Mater Sci Eng A 257, 917.
Jeong, B.-Y. (2014). A study on the surface characteristics of dual phase steel by electron backscatter diffraction (EBSD). Trans Electr Electron Mater 15, 2023.
Jia, N., Cong, Z., Sun, X., Cheng, S., Nie, Z., Ren, Y., Liaw, P. & Wang, Y. (2009). An in situ high-energy X-ray diffraction study of micromechanical behavior of multiple phases in advanced high-strength steels. Acta Mater 57, 39653977.
Jia, N., Peng, R.L., Wang, Y., Johansson, S. & Liaw, P. (2008). Micromechanical behavior and texture evolution of duplex stainless steel studied by neutron diffraction and self-consistent modeling. Acta Mater 56, 782793.
Kang, J., Ososkov, Y., Embury, J.D. & Wilkinson, D.S. (2007). Digital image correlation studies for microscopic strain distribution and damage in dual phase steels. Scr Mater 56, 9991002.
Krieger-Lassen, N. (1998). Automatic high‐precision measurements of the location and width of Kikuchi bands in electron backscatter diffraction patterns. J Microsc 190, 375391.
Krieger-Lassen, N., Jensen, D.J. & Conradsen, K. (1992). Image processing procedures for analysis of electron back scattering patterns. Scanning Microsc 6, 115121.
Laffey, S.M., Vig, J.R. & Hendrickson, M.A. (1997). Using colloidal silica and etching. US Patent US5605490.
Lloyd, G.E. (1987). Atomic number and crystallographic contrast images with the SEM: A review of backscattered electron techniques. Mineral Mag 51, 319.
Oliver, W.C. & Pharr, G.M. (1992). An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7, 15641583.
Ososkov, Y., Wilkinson, D.S., Jain, M. & Simpson, T. (2007). In-situ measurement of local strain partitioning in a commercial dual-phase steel. Int J Mater Res 98, 664673.
Petrov, R., Kestens, L., Wasilkowska, A. & Houbaert, Y. (2007). Microstructure and texture of a lightly deformed TRIP-assisted steel characterized by means of the EBSD technique. Mater Sci Eng A 447, 285297.
Pierman, A.-P., Bouaziz, O., Pardoen, T., Jacques, P. & Brassart, L. (2014). The influence of microstructure and composition on the plastic behaviour of dual-phase steels. Acta Mater 73, 298311.
Pinard, P.T., Schwedt, A., Ramazani, A., Prahl, U. & Richter, S. (2013). Characterization of dual-phase steel microstructure by combined submicrometer EBSD and EPMA carbon measurements. Microsc Microanal 19, 9961006.
Prior, D.J., Mariani, E. & Wheeler, J. (2009). EBSD in the earth sciences: Applications, common practice, and challenges. In Electron Backscatter Diffraction in Materials Science, Adam J. Schwartz, Mukul Kumar, Brent L. Adams & David P. Field (Eds.), pp. 345360. New York, NY: Springer Science+Business Media.
Ryde, L. (2006). Application of EBSD to analysis of microstructures in commercial steels. Mater Sci Technol 22, 12971306.
Santofimia, M., Petrov, R., Zhao, L. & Sietsma, J. (2014). Microstructural analysis of martensite constituents in quenching and partitioning steels. Mater Charact 92, 9195.
Schwindt, C., Bertinetti, M., Iurman, L., Rossit, C. & Signorelli, J.(2015). Numerical study of the effect of martensite plasticity on the forming limits of a dual-phase steel sheet. Int J Mater Form 119.
Suzuki, T. & Hara, Y. (1999). Polishing fluid composition and polishing method. US Patent 5885334 A.
Taylor, M., Choi, K., Sun, X., Matlock, D., Packard, C., Xu, L. & Barlat, F. (2014). Correlations between nanoindentation hardness and macroscopic mechanical properties in DP980 steels. Mater Sci Eng A 597, 431439.
Van der Voort, G., Lucas, G., Manilova, E. & Michael, J. (2004). Study of selective etching of carbides in steel. Sonderbande der Praktischen Metallographie 36, 255260.
Wardle, S., Lin, L., Cetel, A. & Adams, B. (1994). Orientation imaging microscopy: Monitoring residual stress profiles in single crystals using an image-quality parameter, IQ. In Proceedings of the Annual Meeting-Electron Microscopy Society of America, San Francisco Press, San Francisco, 680 pp.
Woo, W., Em, V., Kim, E.-Y., Han, S., Han, Y. & Choi, S.-H. (2012). Stress–strain relationship between ferrite and martensite in a dual-phase steel studied by in situ neutron diffraction and crystal plasticity theories. Acta Mater 60, 69726981.
Wright, S.I. & Nowell, M.M. (2006). EBSD image quality mapping. Microsc Microanal 12, 7284.
Wu, J., Wray, P.J., Garcia, C.I., Hua, M. & DeArdo, A.J. (2005). Image quality analysis: A new method of characterizing microstructures. ISIJ Int 45, 254262.
Xu, H., Dikin, D.A., Burkhart, C. & Chen, W. (2014). Descriptor-based methodology for statistical characterization and 3D reconstruction of microstructural materials. Comput Mater Sci 85, 206216.
Zaefferer, S., Romano, P. & Friedel, F. (2008). EBSD as a tool to identify and quantify bainite and ferrite in low‐alloyed Al‐TRIP steels. J Microsc 230, 499508.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Microscopy and Microanalysis
  • ISSN: 1431-9276
  • EISSN: 1435-8115
  • URL: /core/journals/microscopy-and-microanalysis
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed