Skip to main content Accessibility help

On the Use of Simulated Field-Evaporated Specimen Apex Shapes in Atom Probe Tomography Data Reconstruction

  • David J. Larson (a1), Brian P. Geiser (a1), Ty J. Prosa (a1) and Thomas F. Kelly (a1)


The ability to accurately reconstruct original spatial positions of field-evaporated ions emitted from a surface is fundamental to the success of atom probe tomography. As such, a clear understanding of the evolution of specimen shape and the resultant ions' trajectories during field evaporation plays an important role in improving reconstruction accuracy. To further this understanding, field-evaporation simulations of a bilayer specimen composed of two materials having an evaporation field difference of 20% were performed. The simulated field-evaporation patterns qualitatively compare favorably with experimental data, which provides confidence in the accuracy of specimen shapes predicted by the simulation. Correlations of known original atom positions with detector hit positions as a function of lateral detector position and evaporated depth were derived from the simulation. These correlations are contrasted with the current state-of-the-art reconstruction method thus outlining limitations of the current methodology. A pair of transformations are defined that take into account field-evaporated specimen shapes, and the resulting radial magnifications, to relate recorded ion positions in detector space to reconstructed atomic positions in specimen space. This novel process, when applied to simulated data, results in approximately a factor of 2 improvement in accuracy for reconstructions of interfaces with unequal fields (most general interfaces). This method is not constrained by the fundamental assumption of a hemispherical specimen shape.


Corresponding author

* Corresponding author. E-mail:


Hide All
Bas, P., Bostel, A., Deconihout, B. & Blavette, D. (1995). A general protocol for the reconstruction of 3D atom probe data. Appl Surf Sci 87/88, 298304.
Blavette, D., Sarrau, J.M., Bostel, A. & Gallot, J. (1982). Direction et distance d'analyse a la sonde atomique. Revue Phys Appl 17, 435440.
Bowkett, K.M. & Smith, D.A. (1970). Field-Ion Microscopy. Amsterdam: North-Holland.
Cerezo, A., Clifton, P.H., Galtrey, M.J., Humphreys, C.J., Kelly, T.F., Larson, D.J., Lozano-Perez, S., Marquis, E.A., Oliver, R.A., Sha, G., Thompson, K., Zandbergen, M. & Alvis, R.A. (2007). Atom probe tomography today. Mater Today 10(12), 3642.
Cerezo, A., Smith, G. & Warren, P.J. (1999). Some aspects of image projection in the field-ion microscope. Ultramicroscopy 79, 251257.
De Geuser, F., Gault, B., Bostel, A. & Vurpillot, F. (2007a). Correlated field evaporation as seen by atom probe tomography. Surf Sci 601(2), 536543.
De Geuser, F., Lefebvre, W., Danoix, F., Vurpillot, F., Blavette, D. & Forbord, B. (2007b). An improved reconstruction procedure for the correction of local magnification effects in three-dimensional atom-probe. Surf Interf Anal 39(2-3), 268272.
Fortes, M.A. (1971). The shape of field-evaporated metal tips. Surf Sci 28, 95116.
Gault, B., de Geuser, F., Stephenson, L.T., Moody, M.P., Muddle, B.C. & Ringer, S.P. (2008). Estimation of the reconstruction parameters for atom probe tomography. Microsc Microanal 14, 296305.
Gault, B., Haley, D., de Gueser, F., Moody, M.P., Marquis, E.A., Larson, D.J. & Geiser, B.P. (2011). Advances in the reconstruction of atom probe tomography data. Ultramicroscopy 111, 448457.
Gault, B., La Fontaine, A., Moody, M.P., Ringer, S.P. & Marquis, E.A. (2010). Impact of laser pulsing on the reconstruction in atom probe tomography. Ultramicroscopy 110, 12151222.
Gault, B., Moody, M.P., De Geuser, F., Tsafnat, G., La Fontaine, A., Stephenson, L.T., Haley, D. & Ringer, S.P. (2009). Advances in the calibration of atom probe tomographic reconstruction. J Appl Phys 105, 034913/034911–034919.
Geiser, B.P., Larson, D.J., Gerstl, S.S.A., Reinhard, D.A., Kelly, T.F., Prosa, T.J. & Olson, J.D. (2009a). A system for simulation of tip evolution under field evaporation. Microsc Microanal 15(S2), 302303.
Geiser, B.P., Larson, D.J., Oltman, E., Gerstl, S.S.A., Reinhard, D.A., Kelly, T.F. & Prosa, T.J. (2009b). Wide-field-of-view atom probe reconstruction. Microsc Microanal 15(S2), 292293.
Geiser, B.P., Oltman, E., Larson, D.J., Prosa, T.J. & Kelly, T.F. (2011). Analytic hitmap equation of the ideal spherical evaporator. Microsc Microanal 17(S2), 278280.
Gerstl, S.S.A., Geiser, B.P., Kelly, T.F. & Larson, D.J. (2009). Evaluation of local radii of atom-probe-tomography specimens. Microsc Microanal 15(S2), 248249.
Gomer, R. (1961). Field Emission and Field Ionization. Cambridge, MA: Harvard University Press.
Haley, D., Petersen, T., Ringer, S.P. & Smith, G.D.W. (2011). Atom probe trajectory mapping using experimental tip shape measurements. J Microsc 244(2), 170180.
Kelly, T.F. & Miller, M.K. (2007). Invited review article: Atom probe tomography. Rev Sci Instrum 78, 031101031120.
Larson, D.J., Foord, D.T., Petford-Long, A.K., Liew, H., Blamire, M.G., Cerezo, A. & Smith, G.D.W. (1999a). Field-ion specimen preparation using focused ion-beam milling. Ultramicroscopy 79, 287293.
Larson, D.J., Geiser, B.P., Prosa, T.J., Gerstl, S.S.A., Reinhard, D.A. & Kelly, T.F. (2011a). Improvements in planar feature reconstructions in atom probe tomography. J Microsc 243, 1530.
Larson, D.J., Geiser, B.P., Prosa, T.J. & Kelly, T.F. (2011b). Toward automated optimization of reconstruction of atom probe data. Microsc Microanal 17(S2), 724725.
Larson, D.J., Geiser, B.P., Prosa, T.J., Ulfig, R. & Kelly, T.F. (2011c). Nontangential continuity reconstruction in atom probe tomography data. Microsc Microanal 17(S2), 740741.
Larson, D.J., Prosa, T.J., Geiser, B.P. & Egelhoff, W.L. Jr. (2011d). Effect of analysis direction on the measurement of interfacial mixing in thin metal layers with atom probe tomography. Ultramicroscopy 111, 506511.
Larson, D.J., Russel, K.F. & Miller, M.K. (1999b). Effect of specimen aspect ratio on the reconstruction of atom probe tomography data. Microsc Microanal 5, 930931.
Loberg, B. & Norden, H. (1968). Observations of the field-evaporation end form of tungsten. Arkiv for Fysik 39(25), 383395.
Marquis, E.A., Geiser, B.P., Prosa, T.J. & Larson, D.J. (2011). Evolution of tip shape during field evaporation of complex multilayer structures. J Microsc 241(3), 225233.
Miller, M.K. (1989). Field evaporation and field ion microscopy study of the morphology of phases produced as a result of low temperature phase transformations in the iron-chromium system. Colloque de Physique 50(C8), 247252.
Miller, M.K., Cerezo, A., Hetherington, M.G. & Smith, G.D.W. (1996). Atom Probe Field Ion Microscopy. Oxford: Oxford University Press.
Miller, M.K. & Hetherington, M.G. (1991). Local magnification effects in the atom probe. Surf Sci 246(1-3), 442449.
Miller, M.K., Russell, K.F. & Thompson, G.B. (2005). Strategies for fabricating atom probe specimens with a dual beam FIB. Ultramicroscopy 102, 287298.
Miller, M.K., Russell, K.F., Thompson, K., Alvis, R. & Larson, D.J. (2007). Review of atom probe FIB-based specimen preparation methods. Microsc Microanal 13, 428436.
Oberdorfer, C. & Schmitz, G. (2011). On the field evaporation behavior of dielectric materials in three-dimensional atom probe: A numeric simulation. Microsc Microanal 17, 1525.
Petersen, T.C. & Ringer, S.P. (2009). Electron tomography using a geometric surface-tangent algorithm: Application to atom probe specimen morphology. J Appl Phys 105, 103518.
Rose, D.J. (1956). On the magnification and resolution of the field emission electron microscope. J Appl Phys 27(3), 215220.
Sha, G. & Cerezo, A. (2005). Field ion microscopy and 3-D atom probe analysis of Al3Zr particles in 7050 Al alloy. Ultramicroscopy 102, 151159.
Shariq, A., Mutas, S., Wedderhoff, K., Klein, C., Hortenbach, H., Teichert, S., Kucher, P. & Gerstl, S.S.A. (2009). Investigations of field-evaporated end forms in voltage- and laser-pulsed atom probe tomography. Ultramicroscopy 109(5), 472479.
Thompson, K., Lawrence, D.J., Larson, D.J., Olson, J.D., Kelly, T.F. & Gorman, B. (2007). In-situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy 107, 131139.
Tsong, T.T. (1978). Field ion image formation. Surf Sci 70, 211233.
Vurpillot, F. (2001). Etude de la fonction de transfert point-image de la sonde atomique tomographique. In Groupe de Physiques des Matériaux. Rouen, France: Université de Rouen.
Vurpillot, F., Bostel, A. & Blavette, D. (1999). The shape of field emitters and the ion trajectories in three-dimensional atom probes. J Microsc 196(3), 332336.
Vurpillot, F., Gruber, M., Da Costa, G., Martin, I., Renaud, L. & Bostel, A. (2011). Pragmatic reconstruction methods in atom probe tomography Ultramicroscopy 111(8), 12861294.
Vurpillot, F., Larson, D.J. & Cerezo, A. (2004). Improvement of multilayer analyses with a three-dimensional atom probe. Surf Interf Anal 36, 552558.
Walls, J.M. & Southworth, H.N. (1979). Magnification in the field-ion microscope. J Phys D Appl Phys 12(5), 657667.
Waugh, A.R., Boyes, E.D. & Southon, M.J. (1976). Investigations of field evaporation with a field-desorption microscope. Surf Sci 61, 109142.
Wilkes, T.D., Smith, G.D.W. & Smith, D.A. (1974). On the quantitative analysis of field-ion micrographs. Metallography 7, 403430.



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed